There are More

 Things in Heaven....
© Steve Gilbert

Cosmogony: Origins of the Solar System

- So where did the solar system come from....?

The solar system looks so simple

Earthrise from Apollo 8

What we Thought we Knew (~1960)

- Age ~4.5 billion years
- All planets orbit in almost the same plane, and directions of rotation are same (except Venus).
- Orbit shapes are nearly circular (little eccentricity)
- Most of mass the of solar system is in the sun.
- Inner planets are small and rocky (terrestrial), outer planets are large cold gas giants (jovian)
- moons are rocky and bare

8
Peter Watson

Nebular Hypothesis.

- A rotating gas cloud, probably compressed by a nearby supernova shock wave, starts to collapse.
- The central part collapses to the sun.
- Conservation of angular momentum causes the outer part to speed up.

http://scienceclass.ning.com/
Peter Watson
- The outer planets condense first.
- Gas and dust particles moving at an angle to ecliptic are more likely to interact and hence collapse into the plane normal to the rotation axis.
- Majority rule : less effective at the limits, hence Mercury \& Pluto orbit further out of the plane.

- The orbits are circularized by collisions and tidal effects.
- Intense solar winds remove hydrogen and helium from the inner part of the solar system.
- Terrestrial planets form from the left over refractory materials.
\bullet

Except then we got smart!

- Voyager (1970's) (Jupiter \& Saturn)
- Galileo (Jupiter close-up)
- Cassini (Saturn close-up)
- Hubble (everything!)
- Spitzer (infra-red space telescope)
- CoRot, Kepler (planet searchers)
- and LOTS of others
- lo is in a state of continuous volcanic eruption.
- Volcanic plumes to 250 km
- Vulcanism caused by "tidal pumping" by other moons.

Peter Watson

Moons of Jupiter: lo

- Four large moons, easily visible with binoculars
- Can watch lo rotating
- Pictures by Voyager

Moons of Jupiter: Europa

- Rock covered with ice, probably slushy since no impact craters.

Now thought to have a huge ocean below the ice

- More water than the earth!

- Galileo described them as "Handles"
- Made of small ice pellets and dust (moonlets)
- many thousands of ringlets, some braided
- rings very thin ($<2 \mathrm{~km}$) held in place by "shepherd" moons

Cassini fly-through of Saturn:
still pictures assembled by Stephen vanVuuren

Titan

- larger than our moon, yellow atmosphere so surface invisible
- Touchdown of probe: 14 January 2005,
- The white streaks are 'fog' of methane or ethane vapour. Wind speed at $6-7 \mathrm{~m} / \mathrm{s}$.

Enceladus

Giant stripey snowball?

- and finally (for the time being)
- Spitzer space telescope found a new, very diffuse dark ring round Saturn
- Could be source of the dark face of Iapetus

How big is the solar system?

- For a long time Pluto set the bounds, but now Quaoar

- And it's really far out

And Sedna

- Sedna now at its closest, but 10,000-year orbit takes it into the Oort cloud, the origin of comets.

And Eris aka Xena

SO how about Voyager?

- Launched Sept 1977 for "Grand Tour" of solar system

- Depends what we mean
- not beyond Sedna
- But is entering the region where the sun's magnetic field no longer dominates
- the "heliosheath"
- 5 out of 11 instruments still working

Now we are seeing lots of other solar systems

- first found around 51 Pegasi in 1995: 5 times as big as Jupiter
- if we are lucky, we can see them directly

Like this! (except this is our sun and Venus, June 5)

Picture by Etienne Rollin

Regular tiny dips in

 brightness of star

8

- Orbit has to be aligned with earth
- Need to see several transits
- Does best with large planets, close to star
- "hot jupiters"

How many?
Number of planets by year of discovery

Note: even this is an underestimate:
Kepler has 232I candidates, 6 ± 74 confirmed
0

Kepler 11 has at least 6 planets

0
Peter Watson

- CoRoT-7b
- mass ~ five Earth, radius~1.7 Earth
- year lasts ~ 20 hours
- FAR too hot $\left(1500^{\circ}\right)$

Kepler has found lots!
nearly 2300
confirmed
and
candidates

- Kepler 22b: first earth-sized planet in

Goldlilocks zone (not too hot, not to cold!)

So planetary systems are common: do they look like ours?

Not really

- Planets in orbit round binary (double-star) systems: Kepler 16b
- Lot of stars have hot Jupiters
- Some don't know they should be in circular orbits!
- HD80606b goes from $500^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ in 6 hours
- Lots go backwards

Each grid square $=0.1 \mathrm{AU} \times 0.1 \mathrm{AU}$ Planet and star not drawn to scale

Kepler 36

- ~Earth sized planet + ~Neptune sized planet
- Every 97 days approach to ~ 1.5 million km

Peter Watson

Conclusions

- Based on a very small \# of stars and short observing time, it seems likely ALL stars have planets
- We haven't had time to observe orbits of longer than a year or so
- Maybe more than 100 billion planets in the Milky Way
- If you want to play games with the data, try http:/ /exoplanets.org/plot/
- http: / / exoplanet.eu/index.php
- Acknowledgements:
- Pictures by Steve Gilbert, Steven Van Vuuren, NASA, ESA

0

- Except we have defined planets to be in orbit round stars!
- There may be many planets that don't orbit stars
- A real aotńp miavńtns (astēr planētēs), meaning "wandering star"

- Thanks to Don Monet for the invitation

