TRIUMF Summer Institute 2009

Questions for "Beyond the Standard Model at Colliders" lecture 2 Heather Logan

1. Consider pair production of sleptons $\tilde{\ell}_R$ at the ILC, with decays to the corresponding lepton and the lightest neutralino \tilde{N}_1 :

$$e^+e^- \to \tilde{\ell}_R \tilde{\ell}_R \to \ell^+ \widetilde{N}_1 \ell^- \widetilde{N}_1.$$

Use conservation of relativistic momentum and energy to derive the formula for the energy of one of the leptons in the centre-of-mass frame (set m_{ℓ} to zero):

$$E_{\ell}^{\rm CM} = \frac{M_{\tilde{\ell}_R}^2 - M_{\tilde{N}_1}^2}{4M_{\tilde{\ell}_R}^2} \left(\sqrt{s} + \sqrt{s - 4M_{\tilde{\ell}_R}^2} \cos\theta^*\right),$$

where $\cos \theta^*$ is the angle, in the $\tilde{\ell}$ rest frame, between the direction of the $\tilde{\ell}$ motion and the emission angle of its daughter lepton. The collider centre-of-mass energy is denoted \sqrt{s} as usual. This formula gives the maximum $[\cos \theta^* = 1]$ and minimum $[\cos \theta^* = -1]$ lepton energies (endpoints) in terms of the SUSY particle masses. [Hint: start in the rest frame of one of the sleptons.]

2. Calculate the masses of the Kaluza-Klein states for a massless scalar particle propagating in an extra dimension of length L, with periodic boundary conditions. (*Hint: all you need is de Broglie and relativity.*)