Sparticle Decays

The general features of SUSY particle decays are controlled by:

R-parity conservation
 Lightest R-odd particle (LSP) is stable
 Decay chains of R-odd (SUSY) particles must end in LSP
 LSP as dark matter: require LSP to be neutral and uncoloured
 → escapes from detector → missing energy

Mass spectrum

Heavier particles decay through a cascade of lighter particles

→ High multiplicity of objects in SUSY events − multijets, multileptons

NLSP affects event content:

- light stau → events with taus
- light sbottom \rightarrow events with bs (also come from cascades to $h^0 \rightarrow b\overline{b}$)

sample spectrum

Decays of neutralinos and charginos

Let's think first about 2-body decays.

• Each neutralino and chargino contains at least a small amount of electroweak gaugino: \widetilde{B} , \widetilde{W}^0 , or \widetilde{W}^{\pm}

 \widetilde{N}_i and \widetilde{C}_i inherit weak-interaction couplings to scalar+fermion pairs $\widetilde{N}_i, \widetilde{C}_i \to \text{lepton+slepton}$ or quark+squark [if kinematically allowed]

ullet Each neutralino and chargino contains at least a small amount of Higgsino \widetilde{N}_i and \widetilde{C}_i inherit gaugino-higgsino-Higgs and SU(2) gaugino-gaugino-vector boson couplings

 $\widetilde{N}_i,\widetilde{C}_i \to \widetilde{N}_j,\widetilde{C}_j$ +Higgs or $\widetilde{N}_j,\widetilde{C}_j$ +EW gauge boson [if kin. allowed] Possible 2-body decays:

$$\widetilde{N}_i \to Z\widetilde{N}_j, \quad W\widetilde{C}_j, \quad h^0\widetilde{N}_j, \quad \ell\widetilde{\ell}, \quad \nu\widetilde{\nu}, \quad [A^0\widetilde{N}_j, \quad H^0\widetilde{N}_j, \quad H^{\pm}\widetilde{C}_j^{\mp}, \quad q\widetilde{q}]$$
 (1)

$$\widetilde{C}_i \to W\widetilde{N}_j, \quad Z\widetilde{C}_1, \quad h^0\widetilde{C}_1, \quad \ell\widetilde{\nu}, \quad \nu\widetilde{\ell}, \quad [A^0\widetilde{C}_1, \quad H^0\widetilde{C}_1, \quad H^{\pm}\widetilde{N}_j, \quad q\widetilde{q}']$$
 (2)

[modes in brackets less likely to be kinematically allowed]

Typical signatures:

$$p + p(\bar{p}) \rightarrow \widetilde{C}_1 \widetilde{N}_2 \rightarrow W \widetilde{N}_1 Z \widetilde{N}_1 \rightarrow \ell^+ \ell^- \ell' + \text{MET}$$
 (trileptons) (3)

$$p + p(\bar{p}) \rightarrow \widetilde{C}_1 \widetilde{N}_2 \rightarrow W \widetilde{N}_1 \tau^+ \widetilde{\tau}_1^- \rightarrow \ell \tau^+ \tau^- + MET$$
 (tau – rich) (4)

$$p + p(\bar{p}) \to \widetilde{C}_1 \widetilde{N}_2 \to W \widetilde{N}_1 h^0 \widetilde{N}_1 \to \ell b \bar{b} + MET$$
 (b-rich) (5)

$$p + p(\overline{p}) \to \widetilde{N}_2 \widetilde{N}_2 \to \ell^+ \widetilde{\ell}^- \ell^+ \widetilde{\ell}^- \to \ell^+ \ell^+ W^- W^- + \text{MET}$$
 (like – sign dileptons) (6)

Heavier charginos/neutralinos can have more complicated cascade decays.

For lighter neutralinos/charginos (especially \widetilde{C}_1 and \widetilde{N}_2), all the 2-body decays may be kinematically forbidden.

Consider 3-body decays.

$$\widetilde{N}_i \to f \overline{f} \widetilde{N}_j \qquad \widetilde{N}_i \to f \overline{f}' \widetilde{C}_j \qquad \widetilde{C}_i \to f \overline{f}' \widetilde{N}_j \qquad \widetilde{C}_2 \to f \overline{f} \widetilde{C}_1$$
 (7)

via off-shell gauge bosons, Higgs scalars, sleptons, and/or squarks, e.g.

$$\widetilde{N}_i \to Z^* \widetilde{N}_j \to f \overline{f} \widetilde{N}_j, \qquad \widetilde{N}_i \to \ell \widetilde{\ell}^* \to \ell \ell \widetilde{N}_j$$
 (8)

Different from 2-body cascade decays because final-state particles do not reconstruct definite invariant mass of (virtual) parent.

 $\widetilde{N}_i \to Z\widetilde{N}_j \to \ell\ell\widetilde{N}_j$: dileptons reconstruct m_Z $\widetilde{N}_i \to Z^*\widetilde{N}_j \to \ell\ell\widetilde{N}_j$: dilepton invariant mass is a broad distribution

Leptonic decays especially important for phenomenology:

$$\widetilde{C}_1^{\pm} \to \ell^{\pm} \nu \widetilde{N}_1 \qquad \qquad \widetilde{N}_2 \to \ell^{+} \ell^{-} \widetilde{N}_1$$
 (9)

Slepton decays

Sleptons have 2-body decays to lepton+chargino or lepton+neutralino:

$$\widetilde{\ell} \to \ell \widetilde{N}_i, \qquad \widetilde{\ell} \to \nu \widetilde{C}_i, \qquad \widetilde{\nu} \to \nu \widetilde{N}_i, \qquad \widetilde{\nu} \to \ell \widetilde{C}_i$$
 (10)

If \widetilde{N}_1 is the LSP, then $\widetilde{\ell} \to \ell \widetilde{N}_1$ and $\widetilde{\nu} \to \nu \widetilde{N}_1$ are always allowed (unless $m_{\widetilde{\tau}_1} - m_{\widetilde{N}_1} < m_{\tau}$)

For sufficiently heavy sleptons, decays to charginos and heavier neutralinos are important:

$$\widetilde{\ell} \to \nu \widetilde{C}_1, \qquad \widetilde{\ell} \to \ell \widetilde{N}_2, \qquad \widetilde{\nu} \to \ell \widetilde{C}_1$$
 (11)

- These are followed by decays of \widetilde{C}_1 , \widetilde{N}_2 .
- Left-handed sleptons may prefer these decays, since \widetilde{C}_1 , \widetilde{N}_2 are often mostly wino: larger gauge charge than bino-like \widetilde{N}_1 .

Right-handed sleptons are not charged under SU(2):

$$\widetilde{\ell}_R o \ell \widetilde{N}_1$$
 preferred if \widetilde{N}_1 is bino-like

Squark decays

If the squark decay to quark+gluino is kinematically allowed, it will always dominate

 $\widetilde{q} \rightarrow q \widetilde{g}$ has QCD strength

Otherwise, squark decays to quark+neutralino or quark+chargino

• Direct decay $\widetilde{q} \to q \widetilde{N}_1$ kinematically favored

Can dominate for right-handed squarks because \widetilde{N}_1 is mostly bino

 Left-handed squarks may strongly prefer decay into heavier neutralinos or charginos, because SU(2) gauge coupling is larger

Heavier neutralino/chargino subsequently decays → cascade!

• Squark decays to higgsino-like charginos/neutralinos less important, except for stops/sbottoms with large Yukawa couplings

Higgsino-like neutralino/chargino subsequently decays → cascade!

Cascade decays: can have large numbers of jets/leptons/etc in the final state.

Top squark \widetilde{t}_1 can be special:

Typically lighter than the other squarks

Top is heavy: decays $\widetilde{t}_1 \to t\widetilde{g}$ and $\widetilde{t}_1 \to t\widetilde{N}_1$ may be kinematically forbidden!

Can get \widetilde{t}_1 decaying only to charginos: $\widetilde{t}_1 \to b\widetilde{C}_1$

If this decay is also kinematically forbidden, few options remain:

Flavour-changing decay $\widetilde{t}_1 \to c\widetilde{\widetilde{N}}_1$

3-body decay $\widetilde{t}_1 \to t^* \widetilde{N}_1 \to W b \widetilde{N}_1$

or even 4-body decay $\widetilde{t}_1 o t^* \widetilde{N}_1 \overset{-}{ o} W^* b \widetilde{N}_1 o f \overline{f}' b \widetilde{N}_1$

 \widetilde{t}_1 decay could be so slow that it has time to hadronize, or maybe even fly through the detector! Quasi-stable "R-hadrons"

Gluino decays

The gluino can only decay to quark+squark

(squark can be on-shell or virtual)

- If 2-body decays $\widetilde{g} \to \widetilde{q}q$ are open, they will dominate
 - Mass spectrum matters!
 - If only $\widetilde{g} \to \widetilde{t}_1 t$ is open, final state will contain tops.
 - If only $\widetilde{g} \to \widetilde{b}_1 b$ is open, final state will contain bottoms.
 - If $\widetilde{g} \to \widetilde{q}q$ is open, final state will contain more generic looking jets.
 - These are followed by decay chain of the squark.
- If no 2-body decays are open, gluino will decay via an off-shell squark $\widetilde{g} \to \widetilde{g}^*q$, with $\widetilde{g}^* \to q\widetilde{N}_i$ or $q'\widetilde{C}_i$

A (perhaps crazy) possibility: Split Supersymmetry

The gluino, gauginos, Higgsinos, and h^0 are at the EW/TeV scale All the other scalars (squarks, sleptons, heavier Higgses) are VERY heavy, like $10^{11}~{\rm GeV}$

How will the gluino decay? $\widetilde{g} \to \widetilde{q}^*q$, but \widetilde{q} is very very heavy.

→ Long-lived gluino!

Colliders: can get displaced vertices and/or R-hadron

Cosmic rays: can get gluino-sourced air showers

Early universe: gluinos decaying at the wrong time can screw up Big Bang Nucleosynthesis \rightarrow constraints on gluino lifetime!

Charginos and neutralinos can decay in ways that don't involve squarks or sleptons: will be short-lived like normal.

Decays to the gravitino/goldstino

In some models the LSP is the gravitino (the superpartner of the graviton!)

Typically happens in gauge-mediated models

Gravitino itself couples with gravity-strength couplings: basically irrelevant However, once local SUSY is broken, gravitino gets goldstino as its longitudinal components

Goldstino has non-gravitational coupling to all sparticle-particle pairs: can be relevant for collider phenomenology

Decay $X \to XG$:

Typically too slow to compete with other decays of sparticle \widetilde{X} , UNLESS \widetilde{X} is the NLSP (LSP is \widetilde{G})

ightarrow NLSP will always decay to its superpartner and \widetilde{G} .

Phenomenology depends on what is the NLSP.

• Lightest neutralino:

Contains an admixture of the photino

Decays: $N_1 \rightarrow \gamma G$

Events with two high-energy photons (one for each NLSP decay) plus missing transverse momentum

(In)famous $ee\gamma\gamma+MET$ event (CDF Run 1)

Decay length: $(\kappa_{1\gamma})$ is the "photino content" of \widetilde{N}_1)

$$d = 9.9 \times 10^{-3} \frac{1}{\kappa_{1\gamma}} \left(\frac{E^2}{m_{\widetilde{N}_1}^2} - 1 \right)^{1/2} \left(\frac{m_{\widetilde{N}_1}}{100 \text{ GeV}} \right)^5 \left(\frac{\sqrt{\langle F \rangle}}{100 \text{ TeV}} \right)^{-4} \text{ cm}$$
 (12)

If $\sqrt{\langle F \rangle}$ is less than a few thousand TeV in gauge-mediated models, then \widetilde{N}_1 can decay before leaving a collider detector.

Decay length can be from sub-micron to multi-kilometer "Non-pointing photons" — very distinctive signature

Lightest neutralino, continued:

 \widetilde{N}_1 doesn't have to be pure photino.

Can also have

$$\widetilde{N}_1 \to Z\widetilde{G}, \qquad \widetilde{N}_1 \to h^0\widetilde{G}, \qquad \widetilde{N}_1 \to A^0\widetilde{G}, \qquad \widetilde{N}_1 \to H^0\widetilde{G}$$
 (13)

These tend to be kinematically suppressed compared to $\widetilde{N}_1 \to \gamma \widetilde{G}$.

Heather Logan PHYS 6602 Winter 2006

Charged slepton:

RGEs: \widetilde{e}_R , $\widetilde{\mu}_R$, $\widetilde{\tau}_R$ tend to be lightest "co-NLSPs"

Yukawa couplings: $\widetilde{\tau}_R$ and $\widetilde{\tau}_L$ mix $\to \widetilde{\tau}_1$, $\widetilde{\tau}_2$

• If $\widetilde{e}_R \to e \tau \widetilde{\tau}_1$, $\widetilde{\mu}_R \to \mu \tau \widetilde{\tau}_1$ are not kinematically allowed, then

$$\widetilde{e}_R \to e\widetilde{G}, \qquad \widetilde{\mu}_R \to \mu \widetilde{G}, \qquad \widetilde{\tau}_1 \to \tau \widetilde{G}$$
 (14)

end all decay chains: "slepton co-NLSP scenario"

• If $\widetilde{e}_R \to e \tau \widetilde{\tau}_1$, $\widetilde{\mu}_R \to \mu \tau \widetilde{\tau}_1$ are allowed, then

 $\widetilde{ au}_1$ is the sole NLSP: $\widetilde{ au}_1 o au \widetilde{G}$ ends all decay chains "stau NLSP scenario"

Decay(s) of NLSP(s) to \widetilde{G} can be fast or very slow, depending on $\sqrt{\langle F \rangle}$. Slepton NLSP(s): could see tracks of slepton and decay kinks inside detector! Tracks of slepton: anomalously high ionization rate; time-of-flight

• Lighter stop \widetilde{t}_1 :

In some weird gauge-mediated models \widetilde{t}_1 can be quite light.

This is helped by \widetilde{t}_1 being driven down by \widetilde{t}_L - \widetilde{t}_R mixing

Decays:

•
$$\widetilde{t}_1 \to t\widetilde{N}_1 \to bW\gamma\widetilde{G}$$

•
$$\widetilde{t}_1 \to bW\widetilde{N}_1 \to bW\gamma\widetilde{G}$$

•
$$\widetilde{t}_1 \to c\widetilde{N}_1 \to c\gamma\widetilde{G}$$

Decay mode depends on \widetilde{t}_1 - \widetilde{N}_1 mass splitting.

Signals: pair-produce \widetilde{t}_1 ; decays contain 2 photons and MET

Tagging the photons cuts down QCD background significantly!

Experimental signals for supersymmetry

The plan:

- First I'll give a general overview of SUSY particle production at e^+e^- colliders (ILC) and hadron colliders (LHC/ATLAS) (following the Primer).
- Then I'll go into more detail on the physics behind various SUSY measurement techniques.

E.g., kinematic endpoints, spin correlations, use of polarized e^+e^- beams.

Indirect signals of SUSY could show up from virtual sparticle effects in SM processes (i.e., sparticles in the loop):

Z-pole observables from LEP, $b \to s\gamma$, neutral meson mixing $(K^0-\bar{K}^0, B^0-\bar{B}^0, D^0-\bar{D}^0)$, muon g-2, $\mu \to e\gamma$, electric dipole moments of neutron and electron All have placed bounds on SUSY (with the occasional 2- σ hint...)

A positive signal in any these could have *many* New-Physics interpretations *Direct* detection of SUSY particles is essential to establish their existence

Superparticle production at e^+e^- colliders

All (kinematically accessible) sparticles can be pair produced in e^+e^- The gluino can't be produced at tree level, but it can be produced via a loop

• Squarks, sleptons: pair production via s-channel Z, γ exchange

$$e^{+}e^{-} \to Z^{*}, \gamma^{*} \to \widetilde{\ell}\widetilde{\ell}, \widetilde{q}\widetilde{q}$$
 $e^{+}e^{-} \to Z^{*} \to \widetilde{\nu}\widetilde{\nu}$ (15)

• Selectrons $\tilde{e}_L \tilde{e}_L$, $\tilde{e}_R \tilde{e}_R$ and electron-sneutrinos $\tilde{\nu}_e \tilde{\nu}_e$: also have production from t-channel exchange of a virtual neutralino or chargino (respectively)

 $\overline{e}_L e_L \to \widetilde{e}_L \widetilde{e}_L$: t-channel \widetilde{B} , \widetilde{W}^0

 $\overline{e}_L e_L
ightarrow \widetilde{
u}_e \widetilde{
u}_e$: t-channel \widetilde{W}^\pm

 $\overline{e}_R e_R \to \widetilde{e}_R \widetilde{e}_R$: t-channel \widetilde{B}

 e^-e^- collisions isolate t-channel $\widetilde{e}^-\widetilde{e}^-$ production

 \bullet Charginos and neutralinos: pair production via s-channel Z,γ exchange

$$e^+e^- \to Z^*, \gamma^* \to \widetilde{C}_i^+\widetilde{C}_i^- \qquad \qquad e^+e^- \to Z^* \to \widetilde{C}_i^+\widetilde{C}_j^-, \widetilde{N}_i\widetilde{N}_j$$
 (16)

• Charginos $\widetilde{C}_i^+\widetilde{C}_j^-$ and neutralinos $\widetilde{N}_i\widetilde{N}_j$: also have production from t-channel exchange of a virtual electron-sneutrino or selectron (respectively)

Superparticle production at hadron colliders

Production via QCD: $\widetilde{g}\widetilde{g},\widetilde{g}\widetilde{q},\widetilde{q}\widetilde{q}$. Can be produced in many combinations: e.g.,

- Gluino+squark associated production, $gq \rightarrow \widetilde{g}\widetilde{q}$
- Production of two squarks and no antisquarks, $qq \rightarrow \widetilde{q}\widetilde{q}$ (via t-channel \widetilde{g} exchange)
 - Production of two different-flavour squarks, e.g. $uc \rightarrow \widetilde{u}\widetilde{c}$

LHC reach for gluinos, squarks typically out to about 1 to 2 TeV.

Rule of thumb: QCD production typically gets large $(\mathcal{O}(1))$ radiative corrections. NLO squark/gluino production codes exist; e.g. PROSPINO.

Although coloured particles are typically heavier than colour-neutral particles (due to RGE running), large QCD production cross sections make them typically easier to see at LHC.

Production via EW: $\widetilde{C}_i^+\widetilde{C}_j^-, \widetilde{N}_i\widetilde{N}_j, \widetilde{N}_i\widetilde{C}_j^\pm, \widetilde{\ell}\widetilde{\ell}^*$

 $\widetilde{N}_i\widetilde{C}_j^\pm$ is through W^\pm exchange. Slepton pair production tends to be harder to see.

Rates are smaller than for coloured particles because production cross sections involve EW couplings.

Can also have associated $\widetilde{N}_i\widetilde{q}$, $\widetilde{C}_i^{\pm}\widetilde{q}$ production — EW strength.

Some interesting generic signatures at hadron colliders:

• At least $2m_{\widetilde{N}}$ of missing energy from the two LSPs.

Hadron collider: Can only measure transverse component of missing energy! Don't know the momentum of the centre-of-mass in beam direction Typical signature is jets+missing E_T .

Backgrounds:

genuine missing E_T from leptonic W decays \rightarrow veto events with leptons mismeasurement of jet energies \rightarrow fake missing E_T

• If gluinos decay to hadrons+chargino (via chain $\widetilde{g} \to \overline{q}\widetilde{q} \to \overline{q}q'\widetilde{C}_i$), and charginos then can decay to charged lepton, neutrino, and \widetilde{N}_1 : Gluino doesn't know anything about electric charge: charged lepton can have either sign from each gluino decay.

Can get events with two leptons of the same charge ("like-sign dileptons") and possibly different flavours, plus jets and missing E_T .

Can also get like-sign dileptons from $\widetilde{q}\widetilde{q}$ and $\widetilde{q}\widetilde{g}$ production if \widetilde{q} decays to a gluino.

Like-sign dileptons → smaller SM background:

main SM backgrounds with leptons are W^+W^- , Drell-Yan, and $t\bar{t}$, which only give opposite-sign dileptons.

• Trilepton signal from $\widetilde{C}_1\widetilde{N}_2$ with decays involving W+Z. Can also come from $\widetilde{g}\widetilde{g}$, $\widetilde{q}\widetilde{g}$, or $\widetilde{q}\widetilde{g}$ when decay chains involve \widetilde{C}_1 and \widetilde{N}_2 .