The Higgs sector

Recall the scalar potential (at tree-level):

$$V = \left(|\mu|^{2} + m_{H_{u}}^{2} \right) \left(|H_{u}^{0}|^{2} + |H_{u}^{+}|^{2} \right) + \left(|\mu|^{2} + m_{H_{d}}^{2} \right) \left(|H_{d}^{0}|^{2} + |H_{d}^{-}|^{2} \right) + \left[b \left(H_{u}^{+} H_{d}^{-} - H_{u}^{0} H_{d}^{0} \right) + \text{h.c.} \right] + \frac{1}{8} \left(g^{2} + g'^{2} \right) \left(|H_{u}^{0}|^{2} + |H_{u}^{+}|^{2} - |H_{d}^{0}|^{2} - |H_{d}^{-}|^{2} \right)^{2} + \frac{1}{2} g^{2} \left| H_{u}^{+} H_{d}^{0*} + H_{u}^{0} H_{d}^{-*} \right|^{2}$$
(1)

Minimize \rightarrow physical Higgs masses and the h^0 - H^0 mixing angle α :

$$m_{A^0}^2 = 2b/\sin 2\beta$$
 (2)

$$m_{H^{\pm}}^2 = m_{A^0}^2 + m_W^2 \tag{3}$$

$$m_{h^0,H^0}^2 = \frac{1}{2} \left(m_{A^0}^2 + m_Z^2 \mp \sqrt{(m_{A^0}^2 + m_Z^2)^2 - 4m_Z^2 m_{A^0}^2 \cos^2 2\beta} \right)$$
(4)

$$\frac{\sin 2\alpha}{\sin 2\beta} = -\frac{m_{A^0}^2 + m_Z^2}{m_{H^0}^2 - m_{h^0}^2} \qquad \frac{\cos 2\alpha}{\cos 2\beta} = -\frac{m_{A^0}^2 - m_Z^2}{m_{H^0}^2 - m_{h^0}^2} \tag{5}$$

How many free parameters are there?

• *b* term •
$$(|\mu|^2 + m_{H_u}^2)$$
 • $(|\mu|^2 + m_{H_d}^2)$
combination determines $w^2 + w^2 - w^2$ – already known fr

One combination determines $v_u^2 + v_d^2 = v^2 - a$ lready known from the Z mass. That leaves two free parameter combinations:

usually chosen to be m_{A^0} and $\tan \beta$. This only works at tree level. Once radiative corrections are included, other SUSY parameters enter into the Higgs sector. E.g.:

$$\Delta(m_{h^0}^2) \simeq \frac{3}{4\pi^2} v^2 y_t^4 \sin^4 \beta \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right) \tag{6}$$

Heather Logan

PHYS 6602

Winter 2006

Higgs couplings to SM fermions

Recall we had

$$\mathcal{L} = -y_t \bar{u}_3 Q H_u + y_b \bar{d}_3 Q H_d + y_\tau \bar{e}_3 L H_d \tag{7}$$

$$= -y_t \left(\overline{t}t H_u^0 - \overline{t}b H_u^+ \right) + y_b \left(\overline{b}t H_d^- - \overline{b}b H_d^0 \right) + y_\tau \left(\overline{\tau} \nu_\tau H_d^- - \overline{\tau}\tau H_d^0 \right)$$
(8)

Using $v_u = \langle H_u^0 \rangle v \sin \beta$ and $v_d = \langle H_d^0 \rangle = v \cos \beta$ and $m_W = gv/\sqrt{2}$, we can solve for the Yukawa couplings in terms of the fermion masses:

$$y_t = \frac{gm_t}{\sqrt{2}m_W \sin\beta} \qquad y_b = \frac{gm_b}{\sqrt{2}m_W \cos\beta} \qquad y_\tau = \frac{gm_\tau}{\sqrt{2}m_W \cos\beta} \tag{9}$$

If $\tan \beta \gg 1$ then y_b and y_{τ} get enhanced.

Couplings of the Higgs mass eigenstates:

$$g_{h^{\circ}\overline{t}t} = \frac{gm_t}{2m_W} \frac{\cos\alpha}{\sin\beta} \qquad \qquad g_{h^{\circ}\overline{b}b} = -\frac{gm_b}{2m_W} \frac{\sin\alpha}{\cos\beta} \tag{10}$$

$$g_{H^{\circ}\overline{t}t} = \frac{gm_t}{2m_W} \frac{\sin \alpha}{\sin \beta} \qquad \qquad g_{H^{\circ}\overline{b}b} = \frac{gm_b}{2m_W} \frac{\cos \alpha}{\cos \beta} \tag{11}$$

$$g_{A^{0}\overline{t}t} = \frac{igm_{t}}{2m_{W}} \cot\beta\gamma^{5} \qquad \qquad g_{A^{0}\overline{b}b} = \frac{igm_{b}}{2m_{W}} \tan\beta\gamma^{5} \qquad (12)$$

$$g_{H^+\bar{t}_Rb_L} = \frac{gm_t}{\sqrt{2}m_W} \cot\beta \qquad \qquad g_{H^+\bar{t}_Lb_R} = \frac{gm_b}{\sqrt{2}m_W} \tan\beta \qquad (13)$$

Decoupling limit

An interesting limit occurs for $m_{A^0} \gg m_Z$: the so-called decoupling limit. In the decoupling limit:

- $m_{A^0}\simeq m_{H^0}\simeq m_{H^\pm}\gg m_Z$
- m_{h^0} saturates its upper bound; $m_{h^0} \simeq m_Z |\cos 2\beta|$ at tree level
- $\alpha \simeq \beta \pi/2$:
 - A^{0} , H^{0} , H^{\pm} live together in one linear combination of H_{u} and H_{d}

• h^0 lives in the other linear combination of H_u and H_d , which also contains the Goldstone bosons G^0 , G^{\pm} and the vev $v = \sqrt{v_u^2 + v_d^2}$

• The couplings of h^0 become the same as the couplings of the Standard Model Higgs

Then the Higgs sector looks like:

• One light SM-like Higgs h^0

• A multiplet A^0 , H^0 , H^{\pm} of heavy Higgses that don't affect the lowenergy physics very much.

Need high-precision measurements of the h^0 couplings to distinguish it from the SM!

The details: $\cos(\beta - \alpha)$ goes to zero in the limit $m_{A^0} \gg m_Z$:

$$\cos(\beta - \alpha) \simeq \frac{1}{2} \sin 4\beta \frac{m_Z^2}{m_{A^0}^2}$$
(14)

The h^0 couplings can be rewritten in a useful form in terms of $\cos(\beta - \alpha)$:

$$g_{h^{\circ}\bar{t}t} = \frac{gm_t}{2m_W} \left[\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) \right]$$
(15)

$$g_{h^{0}\overline{b}b} = \frac{gm_{b}}{2m_{W}} [\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)]$$
(16)

$$g_{h^0W^+W^-} = gm_W \sin(\beta - \alpha) \tag{17}$$

$$g_{h^{\circ}ZZ} = \frac{gm_Z}{\cos\theta_W}\sin(\beta - \alpha)$$
(18)

These all approach their SM values in the limit $\cos(\beta - \alpha) \rightarrow 0$.

Neutralinos and Charginos

The Higgsinos and the electroweak gauginos mix with each other because of the effects of electroweak symmetry breaking.

• Neutral Higgsinos \widetilde{H}_u^0 , \widetilde{H}_d^0 and neutral gauginos \widetilde{B} , \widetilde{W}^0 mix:

form four neutral mass eigenstates called neutralinos, $N_{1,2,3,4}$ or $\tilde{\chi}^0_{1,2,3,4}$.

• Convention: $m_{\widetilde{N}_1} < m_{\widetilde{N}_2} < m_{\widetilde{N}_3} < m_{\widetilde{N}_4}$

- The lightest neutralino \widetilde{N}_1 is usually assumed to be the LSP.
- Charged Higgsinos \widetilde{H}_u^+ , \widetilde{H}_d^- and winos \widetilde{W}^+ , \widetilde{W}^- mix:

form two charged mass eigenstates called charginos, $\tilde{C}_{1,2}$ or $\tilde{\chi}_{1,2}^{\pm}$.

• Convention: $m_{\widetilde{C}_1} < m_{\widetilde{C}_2}$

Neutralino mass terms:

$$\mathcal{L} = -\frac{1}{2} \left(\psi^0 \right)^T \mathbf{M}_{\widetilde{N}} \psi^0 + \text{h.c.}$$
(19)

where $\psi^0 = (\widetilde{B}, \widetilde{W}^0, \widetilde{H}_d^0, \widetilde{H}_u^0)$. The mass matrix is:

$$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_{1} & 0 & -c_{\beta}s_{W}m_{Z} & s_{\beta}s_{W}m_{Z} \\ 0 & M_{2} & c_{\beta}c_{W}m_{Z} & -s_{\beta}c_{W}m_{Z} \\ -c_{\beta}s_{W}m_{Z} & c_{\beta}c_{W}m_{Z} & 0 & -\mu \\ s_{\beta}s_{W}m_{Z} & -s_{\beta}c_{W}m_{Z} & -\mu & 0 \end{pmatrix}$$
(20)

Abbreviations: $s_{\beta} = \sin \beta$, $c_{\beta} = \cos \beta$, $s_W = \sin \theta_W$, $c_W = \cos \theta_W$ Danger: Some people use a different sign convention for μ . Looking for the $-\mu$ in the neutralino mass matrix tells you which convention they're using. The neutralino mass matrix is diagonalized by a unitary matrix N: $\tilde{N}_i = N_{ij} \psi_j^0$:

$$\mathbf{M}_{\widetilde{N}}^{diag} = \mathbf{N}^* \mathbf{M}_{\widetilde{N}} \mathbf{N}^{-1}$$
(21)

where $\mathbf{M}_{\widetilde{N}}^{diag}$ is defined to have positive real entries along the diagonal:

$$\mathbf{M}_{\widetilde{N}}^{diag} = \begin{pmatrix} m_{\widetilde{N}_{1}} & & & \\ & m_{\widetilde{N}_{2}} & & \\ & & m_{\widetilde{N}_{3}} & \\ & & & m_{\widetilde{N}_{4}} \end{pmatrix}$$
(22)

 $m_{\widetilde{N}_i}$ are the absolute values of the eigenvalues of $\mathbf{M}_{\widetilde{N}}$

or equivalently, $m_{\widetilde{N}_i}^2$ are the eigenvalues of $\mathbf{M}_{\widetilde{N}}^{\dagger}\mathbf{M}_{\widetilde{N}}$ Caution: some people use a convention in which $m_{\widetilde{N}_i}$ can be negative or even complex, to get a simpler mixing matrix N.

 $\mathbf{M}_{\widetilde{N}}$ has 4 free parameters: M_1 , M_2 , μ , and $\tan \beta$. If gaugino mass unification holds, so that $M_1 \simeq 0.5M_2$ due to the RGEs, this reduces to 3.

If $m_Z \ll |\mu \pm M_1|, |\mu \pm M_2|$ then the gaugino-Higgsino mixing is small. Then (assuming also $M_1 < M_2 < |\mu|$)

 \widetilde{N}_{1}

$$\widetilde{N}_1 \approx \widetilde{B}, \qquad m_{\widetilde{N}_1} \approx M_1 + \cdots$$
 (23)
 $\widetilde{N}_2 \approx \widetilde{W}^0, \qquad m_{\widetilde{N}_1} \approx M_2 + \cdots$ (24)

$$m_{\widetilde{N}_2} \approx M_2 + \cdots$$
 (24)

$$\widetilde{N}_{3}, N_{4} \approx \frac{1}{\sqrt{2}} \left(\widetilde{H}_{u}^{0} \pm \widetilde{H}_{d}^{0} \right), \qquad \qquad m_{\widetilde{N}_{3}}, m_{\widetilde{N}_{4}} \approx |\mu| + \cdots$$
(25)

Heather Logan

PHYS 6602

Winter 2006

Chargino mass terms:

$$\mathcal{L} = -\frac{1}{2} \left(\psi^{\pm} \right)^T \mathbf{M}_{\widetilde{C}} \psi^{\pm} + \text{h.c.}$$
(26)

where $\psi^{\pm} = (\widetilde{W}^+, \widetilde{H}_u^+, \widetilde{W}^-, \widetilde{H}_d^-)$. The mass matrix is (in 2×2 block form):

$$\mathbf{M}_{\widetilde{C}} = \begin{pmatrix} \mathbf{0} & \mathbf{X}^T \\ \mathbf{X} & \mathbf{0} \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} M_2 & \sqrt{2}s_\beta m_W \\ \sqrt{2}c_\beta m_W & \mu \end{pmatrix}$$
(27)

The chargino mass matrix is diagonalized by *two* unitary 2×2 matrices U and V, one acting on the + charged states and one acting on the - charged states:

$$\begin{pmatrix} \widetilde{C}_{1}^{+} \\ \widetilde{C}_{2}^{+} \end{pmatrix} = \mathbf{V} \begin{pmatrix} \widetilde{W}^{+} \\ \widetilde{H}_{u}^{+} \end{pmatrix} \qquad \begin{pmatrix} \widetilde{C}_{1}^{-} \\ \widetilde{C}_{2}^{-} \end{pmatrix} = \mathbf{U} \begin{pmatrix} \widetilde{W}^{-} \\ \widetilde{H}_{d}^{-} \end{pmatrix}$$
(28)

 ${\bf U}$ and ${\bf V}$ diagonalize the mass matrix:

$$\mathbf{U}^* \mathbf{X} \mathbf{V}^{-1} = \begin{pmatrix} m_{\widetilde{C}_1} & \mathbf{0} \\ \mathbf{0} & m_{\widetilde{C}_2} \end{pmatrix}$$
(29)

$m_{\widetilde{C}_i}^2$ are the eigenvalues of $\mathbf{X}^\dagger \mathbf{X}.$

If $m_Z \ll |\mu \pm M_2|$ then the gaugino-Higgsino mixing is small. Then (assuming also $M_2 < |\mu|$)

$$\widetilde{C}_1^{\pm} \approx \widetilde{W}^{\pm}, \qquad m_{C_1} \approx M_2$$
 (30)

$$\widetilde{C}_2^+ \approx \widetilde{H}_u^+, \quad \widetilde{C}_2^- \approx \widetilde{H}_d^-, \qquad m_{C_2} \approx |\mu|$$
(31)

In practice the neutralino and chargino masses and mixing angles are best computed numerically.

Heather Logan

PHYS 6602

Winter 2006

Squarks and sleptons

In principle, all of the states with the same electric charge, R-parity, and colour can mix with each other:

 $(\widetilde{u}_L, \widetilde{c}_L, \widetilde{t}_L, \widetilde{u}_R, \widetilde{c}_R, \widetilde{t}_R) \to 6 \times 6$ mass-squared matrix $(\widetilde{d}_L, \widetilde{s}_L, \widetilde{b}_L, \widetilde{d}_R, \widetilde{s}_R, \widetilde{b}_R) \to 6 \times 6$ mass-squared matrix $(\widetilde{e}_L, \widetilde{\mu}_L, \widetilde{\tau}_L, \widetilde{e}_R, \widetilde{\mu}_R, \widetilde{\tau}_R) \to 6 \times 6$ mass-squared matrix $(\widetilde{\nu}_e, \widetilde{\nu}_\mu, \widetilde{\nu}_\tau) \to 3 \times 3$ mass-squared matrix

Fortunately, for flavour-blind soft parameters, the inter-generation mixing is very small.

3rd family (t, b, τ) can have very different masses than first 2 families because of Yukawa and *a*-term contribution in RGEs.

Can also have substantial L-R mixing – see below

1st and 2nd generation sfermions end up in nearly degenerate, unmixed pairs: $(\tilde{e}_R, \tilde{\mu}_R), (\tilde{\nu}_e, \tilde{\nu}_\mu), (\tilde{u}_R, \tilde{c}_R), (\tilde{d}_R, \tilde{s}_R), (\tilde{u}_L, \tilde{c}_L), (\tilde{d}_L, \tilde{s}_L)$ A second look at RGE solution for first two families (for universal m_0^2):

$$m_{Q_1}^2 = m_{Q_2}^2 = m_0^2 + K_3 + K_2 + \frac{1}{36}K_1,$$
 (32)

$$m_{\bar{u}_1}^2 = m_{\bar{u}_2}^2 = m_0^2 + K_3 + \frac{4}{9}K_1,$$
 (33)

$$m_{\bar{d}_1}^2 = m_{\bar{d}_2}^2 = m_0^2 + K_3 + \frac{1}{9}K_1,$$
 (34)

$$m_{L_1}^2 = m_{L_2}^2 = m_0^2 + K_2 + \frac{1}{4}K_1,$$
 (35)

$$m_{\bar{e}_1}^2 = m_{\bar{e}_2}^2 = m_0^2 + K_1.$$
 (36)

 $K_3 \gg K_2 \gg K_1$; come from SU(3), SU(2), U(1) gaugino contributions Squarks generically heavier than sleptons.

Also a "hyperfine splitting" due D-term (sfermion)²(Higgs)² contribution:

$$\Delta_{\phi} = \left(T_3^{\phi} - Q_{EM}^{\phi} \sin^2 \theta_W\right) \cos 2\beta m_Z^2 \tag{37}$$

Splits members of Q, L by small amount: \widetilde{u}_L - \widetilde{d}_L , \widetilde{e}_L - $\widetilde{\nu}_e$

Within a single family, $\tilde{q}_L - \tilde{q}_R$ mixing can only arise through involvement of a Higgs coupling y_q or a_q . Only important for 3rd family! E.g. for the stops:

$$\mathcal{L} = -\left(\tilde{t}_L^*, \tilde{t}_R^*\right) \mathbf{m}_{\tilde{\mathbf{t}}}^2 \left(\begin{array}{c} \tilde{t}_L\\ \tilde{t}_R \end{array}\right)$$
(38)

where

$$\mathbf{m}_{\tilde{t}}^{2} = \begin{pmatrix} m_{Q_{3}}^{2} + m_{t}^{2} + \Delta_{u} & v(a_{t} \sin \beta - \mu y_{t} \cos \beta) \\ v(a_{t} \sin \beta - \mu y_{t} \cos \beta) & m_{\tilde{u}_{3}}^{2} + m_{t}^{2} + \Delta_{\bar{u}} \end{pmatrix}$$
(39)

Diagonalize mass-squared matrix \rightarrow mass eigenstates $(m_{\tilde{t}_1}^2 < m_{\tilde{t}_2}^2, 0 \le \theta_{\tilde{t}} \le \pi)$:

$$\begin{pmatrix} \widetilde{t}_1 \\ \widetilde{t}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta_{\widetilde{t}} & \sin\theta_{\widetilde{t}} \\ -\sin\theta_{\widetilde{t}} & \cos\theta_{\widetilde{t}} \end{pmatrix} \begin{pmatrix} \widetilde{t}_L \\ \widetilde{t}_R \end{pmatrix}$$
(40)

RG effects tend to make $m_{\tilde{u}_3}^2 < m_{Q_3}^2$, and both of these lighter than first 2 families. Mixing splits $m_{\tilde{t}_1}^2$ and $m_{\tilde{t}_2}^2$ even more.

Often find \tilde{t}_1 to be the lightest squark in the model! Analogous mixing for sbottoms \tilde{b}_1, \tilde{b}_2 and staus $\tilde{\tau}_1, \tilde{\tau}_2$. y_b, y_τ and a_b, a_τ in off-diagonal terms: mixing more important at large tan β . $\tilde{b}_1, \tilde{\tau}_1$ can be significantly lighter than 1st and 2nd family Sometimes get $\tilde{\tau}_1$ as lightest sfermion - e.g., "stau coannihilation region" for dark matter

Summary: the particle content of the MSSM

Names	Spin	P_R	Mass Eigenstates	Gauge Eigenstates
Higgs bosons	0	+1	$h^0 H^0 A^0 H^{\pm}$	$H^0_u H^0_d H^+_u H^d$
squarks	0	-1	$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R \ \widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R \ \widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2$	$\widetilde{t}_L \; \widetilde{t}_R \; \widetilde{b}_L \; \widetilde{b}_R$
sleptons	0	-1	$egin{array}{lll} \widetilde{e}_L & \widetilde{e}_R & \widetilde{ u}_e \ \widetilde{\mu}_L & \widetilde{\mu}_R & \widetilde{ u}_\mu \ \widetilde{ au}_1 & \widetilde{ au}_2 & \widetilde{ u}_ au \end{array}$	$\widetilde{ au}_L ~\widetilde{ au}_R ~\widetilde{ u}_ au$
neutralinos	1/2	-1	\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4	\widetilde{B}^{0} \widetilde{W}^{0} \widetilde{H}^{0}_{u} \widetilde{H}^{0}_{d}
charginos	1/2	-1	\widetilde{C}_1^\pm \widetilde{C}_2^\pm	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d
gluino	1/2	-1	\widetilde{g}	44 11
gravitino/ goldstino	3/2	-1	\widetilde{G}	11 11

A schematic sample SUSY spectrum:

(This may or may not have anything to do with reality) Mass

Some features of this sample spectrum:

- \widetilde{N}_1 is LSP
- \widetilde{t}_1 and \widetilde{b}_1 are the lightest squarks
- $\widetilde{\tau}_1$ is the lightest charged slepton
- Coloured particles are heavier than uncoloured particles