The Higgs sector

Recall the scalar potential (at tree-level):

$$
\begin{align*}
V= & \left(|\mu|^{2}+m_{H_{u}}^{2}\right)\left(\left|H_{u}^{0}\right|^{2}+\left|H_{u}^{+}\right|^{2}\right)+\left(|\mu|^{2}+m_{H_{d}}^{2}\right)\left(\left|H_{d}^{0}\right|^{2}+\left|H_{d}^{-}\right|^{2}\right) \\
& +\left[b\left(H_{u}^{+} H_{d}^{-}-H_{u}^{0} H_{d}^{0}\right)+\text { h.c. }\right] \\
& +\frac{1}{8}\left(g^{2}+g^{2}\right)\left(\left|H_{u}^{0}\right|^{2}+\left|H_{u}^{+}\right|^{2}-\left|H_{d}^{0}\right|^{2}-\left|H_{d}^{-}\right|^{2}\right)^{2} \\
& +\frac{1}{2} g^{2}\left|H_{u}^{+} H_{d}^{0 *}+H_{u}^{0} H_{d}^{-*}\right|^{2} \tag{1}
\end{align*}
$$

Minimize \rightarrow physical Higgs masses and the $h^{0}-H^{0}$ mixing angle α :

$$
\begin{align*}
m_{A^{\circ}}^{2} & =2 b / \sin 2 \beta \tag{2}\\
m_{H^{ \pm}}^{2} & =m_{A^{0}}^{2}+m_{W}^{2} \tag{3}\\
m_{h^{0}, H^{\circ}}^{2} & =\frac{1}{2}\left(m_{A^{0}}^{2}+m_{Z}^{2} \mp \sqrt{\left(m_{A^{\circ}}^{2}+m_{Z}^{2}\right)^{2}-4 m_{Z}^{2} m_{A^{0}}^{2} \cos ^{2} 2 \beta}\right) \tag{4}\\
\frac{\sin 2 \alpha}{\sin 2 \beta} & =-\frac{m_{A^{0}}^{2}+m_{Z}^{2}}{m_{H^{0}}^{2}-m_{h^{0}}^{2}} \quad \quad \quad \frac{\cos 2 \alpha}{\cos 2 \beta}=-\frac{m_{A^{\circ}}^{2}-m_{Z}^{2}}{m_{H^{0}}^{2}-m_{h^{0}}^{2}} \tag{5}
\end{align*}
$$

How many free parameters are there?

- b term
- $\left(|\mu|^{2}+m_{H_{u}}^{2}\right)$
- $\left(|\mu|^{2}+m_{H_{d}}^{2}\right)$

One combination determines $v_{u}^{2}+v_{d}^{2}=v^{2}$ - already known from the Z mass. That leaves two free parameter combinations:
usually chosen to be $m_{A^{\circ}}$ and $\tan \beta$.
This only works at tree level. Once radiative corrections are included, other SUSY parameters enter into the Higgs sector. E.g.:

$$
\begin{equation*}
\Delta\left(m_{h^{0}}^{2}\right) \simeq \frac{3}{4 \pi^{2}} v^{2} y_{t}^{4} \sin ^{4} \beta \ln \left(\frac{m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}}{m_{t}^{2}}\right) \tag{6}
\end{equation*}
$$

Higgs couplings to SM fermions

Recall we had

$$
\begin{align*}
\mathcal{L} & =-y_{t} \bar{u}_{3} Q H_{u}+y_{b} \bar{d}_{3} Q H_{d}+y_{\tau} \bar{e}_{3} L H_{d} \tag{7}\\
& =-y_{t}\left(\bar{t} t H_{u}^{0}-\bar{t} b H_{u}^{+}\right)+y_{b}\left(\bar{b} t H_{d}^{-}-\bar{b} b H_{d}^{0}\right)+y_{\tau}\left(\bar{\tau} \nu_{\tau} H_{d}^{-}-\bar{\tau} \tau H_{d}^{0}\right) \tag{8}
\end{align*}
$$

Using $v_{u}=\left\langle H_{u}^{0}\right\rangle v \sin \beta$ and $v_{d}=\left\langle H_{d}^{0}\right\rangle=v \cos \beta$ and $m_{W}=g v / \sqrt{2}$, we can solve for the Yukawa couplings in terms of the fermion masses:

$$
\begin{equation*}
y_{t}=\frac{g m_{t}}{\sqrt{2} m_{W} \sin \beta} \quad y_{b}=\frac{g m_{b}}{\sqrt{2} m_{W} \cos \beta} \quad y_{\tau}=\frac{g m_{\tau}}{\sqrt{2} m_{W} \cos \beta} \tag{9}
\end{equation*}
$$

If $\tan \beta \gg 1$ then y_{b} and y_{τ} get enhanced.

Couplings of the Higgs mass eigenstates:

$$
\begin{array}{cc}
g_{h^{\circ} \bar{t}}=\frac{g m_{t}}{2 m_{W}} \frac{\cos \alpha}{\sin \beta} & g_{h^{\circ} \bar{b} b}=-\frac{g m_{b}}{2 m_{W}} \frac{\sin \alpha}{\cos \beta} \\
g_{H^{0} \bar{t} t}=\frac{g m_{t}}{2 m_{W}} \frac{\sin \alpha}{\sin \beta} & g_{H^{\circ} \bar{b} b}=\frac{g m_{b}}{2 m_{W}} \frac{\cos \alpha}{\cos \beta} \\
g_{A^{0} \bar{t} t}=\frac{i g m_{t}}{2 m_{W}} \cot \beta \gamma^{5} & g_{A^{\circ} \bar{b} b}=\frac{i g m_{b}}{2 m_{W}} \tan \beta \gamma^{5} \\
g_{H^{+t_{R} b_{L}}}=\frac{g m_{t}}{\sqrt{2} m_{W}} \cot \beta & g_{H^{+\bar{t}_{L} b_{R}}}=\frac{g m_{b}}{\sqrt{2} m_{W}} \tan \beta \tag{13}
\end{array}
$$

Decoupling limit

An interesting limit occurs for $m_{A^{0}} \gg m_{Z}$: the so-called decoupling limit. In the decoupling limit:

- $m_{A^{0}} \simeq m_{H^{\circ}} \simeq m_{H^{ \pm}} \gg m_{Z}$
- $m_{h^{0}}$ saturates its upper bound; $m_{h^{0}} \simeq m_{Z}|\cos 2 \beta|$ at tree level
- $\alpha \simeq \beta-\pi / 2$:
- $A^{0}, H^{0}, H^{ \pm}$live together in one linear combination of H_{u} and H_{d}
- h^{0} lives in the other linear combination of H_{u} and H_{d}, which also
contains the Goldstone bosons $G^{0}, G^{ \pm}$and the vev $v=\sqrt{v_{u}^{2}+v_{d}^{2}}$
- The couplings of h^{0} become the same as the couplings of the Standard Model Higgs
Then the Higgs sector looks like:
- One light SM-like Higgs h^{0}
- A multiplet $A^{0}, H^{0}, H^{ \pm}$of heavy Higgses that don't affect the lowenergy physics very much.
Need high-precision measurements of the h^{0} couplings to distinguish it from the SM!

The details:

$\cos (\beta-\alpha)$ goes to zero in the limit $m_{A^{0}} \gg m_{Z}$:

$$
\begin{equation*}
\cos (\beta-\alpha) \simeq \frac{1}{2} \sin 4 \beta \frac{m_{Z}^{2}}{m_{A^{0}}^{2}} \tag{14}
\end{equation*}
$$

The h^{0} couplings can be rewritten in a useful form in terms of $\cos (\beta-\alpha)$:

$$
\begin{align*}
g_{h^{\circ} \bar{t}} & =\frac{g m_{t}}{2 m_{W}}[\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha)] \tag{15}\\
g_{h^{\circ} \bar{b} b} & =\frac{g m_{b}}{2 m_{W}}[\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha)] \tag{16}\\
g_{h^{\circ} W^{+} W^{-}} & =g m_{W} \sin (\beta-\alpha) \tag{17}\\
g_{h^{\circ} Z Z} & =\frac{g m_{Z}}{\cos \theta_{W}} \sin (\beta-\alpha) \tag{18}
\end{align*}
$$

These all approach their SM values in the limit $\cos (\beta-\alpha) \rightarrow 0$.

Neutralinos and Charginos

The Higgsinos and the electroweak gauginos mix with each other because of the effects of electroweak symmetry breaking.

- Neutral Higgsinos $\widetilde{H}_{u}^{0}, \widetilde{H}_{d}^{0}$ and neutral gauginos $\widetilde{B}, \widetilde{W}^{0}$ mix:
form four neutral mass eigenstates called neutralinos, $\widetilde{N}_{1,2,3,4}$ or $\tilde{\chi}_{1,2,3,4}^{0}$.
- Convention: $m_{\widetilde{N}_{1}}<m_{\widetilde{N}_{2}}<m_{\widetilde{N}_{3}}<m_{\widetilde{N}_{4}}$
- The lightest neutralino \widetilde{N}_{1} is usually assumed to be the LSP.
- Charged Higgsinos $\widetilde{H}_{u}^{+}, \widetilde{H}_{d}^{-}$and winos $\widetilde{W}^{+}, \widetilde{W}^{-}$mix:
form two charged mass eigenstates called charginos, $\widetilde{C}_{1,2}$ or $\widetilde{\chi}_{1,2}^{ \pm}$.
- Convention: $m_{\widetilde{C}_{1}}<m_{\widetilde{C}_{2}}$

Neutralino mass terms:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2}\left(\psi^{0}\right)^{T} \mathbf{M}_{\widetilde{N}} \psi^{0}+\text { h.c. } \tag{19}
\end{equation*}
$$

where $\psi^{0}=\left(\widetilde{B}, \widetilde{W}^{0}, \widetilde{H}_{d}^{0}, \widetilde{H}_{u}^{0}\right)$.
The mass matrix is:

$$
\mathbf{M}_{\widetilde{N}}=\left(\begin{array}{cccc}
M_{1} & 0 & -c_{\beta} s_{W} m_{Z} & s_{\beta} s_{W} m_{Z} \tag{20}\\
0 & M_{2} & c_{\beta} c_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} \\
-c_{\beta} s_{W} m_{Z} & c_{\beta} c_{W} m_{Z} & 0 & -\mu \\
s_{\beta} s_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} & -\mu & 0
\end{array}\right)
$$

$$
\text { Abbreviations: } s_{\beta}=\sin \beta, c_{\beta}=\cos \beta, s_{W}=\sin \theta_{W}, c_{W}=\cos \theta_{W}
$$

Danger: Some people use a different sign convention for μ. Looking for the $-\mu$ in the neutralino mass matrix tells you which convention they're using.

The neutralino mass matrix is diagonalized by a unitary matrix $\mathbf{N}: \widetilde{N}_{i}=\mathbf{N}_{i j} \psi_{j}^{0}$:

$$
\begin{equation*}
\mathbf{M}_{\widetilde{N}}^{\text {diag }}=\mathbf{N}^{*} \mathbf{M}_{\widetilde{N}} \mathbf{N}^{-1} \tag{21}
\end{equation*}
$$

where $\mathbf{M}_{\widetilde{N}}^{\text {diag }}$ is defined to have positive real entries along the diagonal:

$$
\mathbf{M}_{\widetilde{N}}^{\text {diag }}=\left(\begin{array}{llll}
m_{\widetilde{N}_{1}} & & & \tag{22}\\
& m_{\widetilde{N}_{2}} & & \\
& & m_{\widetilde{N}_{3}} & \\
& & & m_{\widetilde{N}_{4}}
\end{array}\right)
$$

$m_{\widetilde{N}_{i}}$ are the absolute values of the eigenvalues of $\mathbf{M}_{\widetilde{N}}$
or equivalently, $m_{\widetilde{N}_{i}}^{2}$ are the eigenvalues of $\mathbf{M}_{\widetilde{N}}^{\dagger} \mathbf{M}_{\widetilde{N}}$
Caution: some people use a convention in which $m_{\widetilde{N}_{i}}$ can be negative or even complex, to get a simpler mixing matrix \mathbf{N}.
$\mathbf{M}_{\widetilde{N}}$ has 4 free parameters: M_{1}, M_{2}, μ, and $\tan \beta$.
If gaugino mass unification holds, so that $M_{1} \simeq 0.5 M_{2}$ due to the RGEs, this reduces to 3.
If $m_{Z} \ll\left|\mu \pm M_{1}\right|,\left|\mu \pm M_{2}\right|$ then the gaugino-Higgsino mixing is small.
Then (assuming also $M_{1}<M_{2}<|\mu|$)

$$
\begin{align*}
\widetilde{N}_{1} \approx \widetilde{B}, & m_{\widetilde{N}_{1}} \approx M_{1}+\cdots \tag{23}\\
\widetilde{N}_{2} \approx \widetilde{W}^{0}, & m_{\widetilde{N}_{2}} \approx M_{2}+\cdots \tag{24}\\
\widetilde{N}_{3}, N_{4} \approx \frac{1}{\sqrt{2}}\left(\widetilde{H}_{u}^{0} \pm \widetilde{H}_{d}^{0}\right), & m_{\widetilde{N}_{3}}, m_{\widetilde{N}_{4}} \approx|\mu|+\cdots \tag{25}
\end{align*}
$$

Chargino mass terms:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2}\left(\psi^{ \pm}\right)^{T} \mathbf{M}_{\widetilde{C}} \psi^{ \pm}+\text {h.c. } \tag{26}
\end{equation*}
$$

where $\psi^{ \pm}=\left(\widetilde{W}^{+}, \widetilde{H}_{u}^{+}, \widetilde{W}^{-}, \widetilde{H}_{d}^{-}\right)$.
The mass matrix is (in 2×2 block form):

$$
\mathbf{M}_{\widetilde{C}}=\left(\begin{array}{cc}
0 & \mathbf{X}^{T} \tag{27}\\
\mathbf{X} & 0
\end{array}\right), \quad \mathbf{X}=\left(\begin{array}{cc}
M_{2} & \sqrt{2} s_{\beta} m_{W} \\
\sqrt{2} c_{\beta} m_{W} & \mu
\end{array}\right)
$$

The chargino mass matrix is diagonalized by two unitary 2×2 matrices U and V , one acting on the + charged states and one acting on the - charged states:

$$
\begin{equation*}
\binom{\widetilde{C}_{1}^{+}}{\widetilde{C}_{2}^{+}}=\mathrm{V}\binom{\widetilde{W}^{+}}{\widetilde{H}_{u}^{+}} \quad\binom{\widetilde{C}_{1}^{-}}{\widetilde{C}_{2}^{-}}=\mathrm{U}\binom{\widetilde{W}^{-}}{\widetilde{H}_{d}^{-}} \tag{28}
\end{equation*}
$$

U and V diagonalize the mass matrix:

$$
\mathbf{U}^{*} \mathbf{X} \mathbf{V}^{-1}=\left(\begin{array}{cc}
m_{\widetilde{C}_{1}} & 0 \tag{29}\\
0 & m_{\widetilde{C}_{2}}
\end{array}\right)
$$

$m_{\widetilde{C}_{i}}^{2}$ are the eigenvalues of $\mathbf{X}^{\dagger} \mathbf{X}$.
If $m_{Z} \ll\left|\mu \pm M_{2}\right|$ then the gaugino-Higgsino mixing is small.
Then (assuming also $M_{2}<|\mu|$)

$$
\begin{array}{ll}
\widetilde{C}_{1}^{ \pm} \approx \widetilde{W}^{ \pm}, & m_{C_{1}} \approx M_{2} \\
\widetilde{C}_{2}^{+} \approx \widetilde{H}_{u}^{+}, & \widetilde{C}_{2}^{-} \approx \widetilde{H}_{d}^{-}, \tag{31}
\end{array} m_{C_{2}} \approx|\mu|
$$

[^0]
Squarks and sleptons

In principle, all of the states with the same electric charge, R-parity, and colour can mix with each other:
$\left(\widetilde{u}_{L}, \widetilde{c}_{L}, \widetilde{t}_{L}, \widetilde{u}_{R}, \widetilde{c}_{R}, \widetilde{t}_{R}\right) \rightarrow 6 \times 6$ mass-squared matrix
$\left(\widetilde{d}_{L}, \widetilde{s}_{L}, \widetilde{b}_{L}, \widetilde{d}_{R}, \widetilde{s}_{R}, \widetilde{b}_{R}\right) \rightarrow 6 \times 6$ mass-squared matrix
$\left(\widetilde{e}_{L}, \widetilde{\mu}_{L}, \widetilde{\tau}_{L}, \widetilde{e}_{R}, \widetilde{\mu}_{R}, \widetilde{\tau}_{R}\right) \rightarrow 6 \times 6$ mass-squared matrix
$\left(\widetilde{\nu}_{e}, \widetilde{\nu}_{\mu}, \widetilde{\nu}_{\tau}\right) \rightarrow 3 \times 3$ mass-squared matrix
Fortunately, for flavour-blind soft parameters, the inter-generation mixing is very small.

3rd family (t, b, τ) can have very different masses than first 2 families because of Yukawa and a-term contribution in RGEs.

Can also have substantial $L-R$ mixing - see below
1st and 2 nd generation sfermions end up in nearly degenerate, unmixed pairs:

$$
\left(\widetilde{e}_{R}, \widetilde{\mu}_{R}\right),\left(\widetilde{\nu}_{e}, \widetilde{\nu}_{\mu}\right),\left(\widetilde{u}_{R}, \widetilde{c}_{R}\right),\left(\widetilde{d}_{R}, \widetilde{s}_{R}\right),\left(\widetilde{u}_{L}, \widetilde{c}_{L}\right),\left(\widetilde{d}_{L}, \widetilde{s}_{L}\right)
$$

A second look at RGE solution for first two families (for universal m_{0}^{2}):

$$
\begin{array}{rlrl}
m_{Q_{1}}^{2} & =m_{Q_{2}}^{2} & =m_{0}^{2}+K_{3}+K_{2}+\frac{1}{36} K_{1}, \\
m_{\bar{u}_{1}}^{2} & =m_{\bar{u}_{2}}^{2} & =m_{0}^{2}+K_{3} & +\frac{4}{9} K_{1}, \\
m_{\bar{d}_{1}}^{2} & =m_{\bar{d}_{2}}^{2} & =m_{0}^{2}+K_{3} & +\frac{1}{9} K_{1}, \\
m_{L_{1}}^{2}=m_{L_{2}}^{2} & =m_{0}^{2} & +K_{2}+\frac{1}{4} K_{1}, \\
m_{\bar{e}_{1}}^{2} & =m_{\bar{e}_{2}}^{2} & =m_{0}^{2} & \quad+K_{1} . \tag{36}
\end{array}
$$

$K_{3} \gg K_{2} \gg K_{1}$; come from $\mathrm{SU}(3), \mathrm{SU}(2), \mathrm{U}(1)$ gaugino contributions
Squarks generically heavier than sleptons.
Also a "hyperfine splitting" due D-term (sfermion) ${ }^{2}$ (Higgs) ${ }^{2}$ contribution:

$$
\begin{equation*}
\Delta_{\phi}=\left(T_{3}^{\phi}-Q_{E M}^{\phi} \sin ^{2} \theta_{W}\right) \cos 2 \beta m_{Z}^{2} \tag{37}
\end{equation*}
$$

Splits members of Q, L by small amount: $\widetilde{u}_{L}-\widetilde{d}_{L}, \widetilde{e}_{L}-\widetilde{\nu}_{e}$

Within a single family, $\widetilde{q}_{L}-\widetilde{q}_{R}$ mixing can only arise through involvement of a Higgs coupling y_{q} or a_{q}. Only important for 3rd family! E.g. for the stops:

$$
\begin{equation*}
\mathcal{L}=-\left(\widetilde{t}_{L}^{*}, \widetilde{t}_{R}^{*}\right) \mathbf{m}_{\mathfrak{t}}^{2}\binom{\widetilde{t}_{L}}{\widetilde{t}_{R}} \tag{38}
\end{equation*}
$$

where

$$
\mathbf{m}_{\bar{t}}^{2}=\left(\begin{array}{cc}
m_{Q_{3}}^{2}+m_{t}^{2}+\Delta_{u} & v\left(a_{t} \sin \beta-\mu y_{t} \cos \beta\right) \tag{39}\\
v\left(a_{t} \sin \beta-\mu y_{t} \cos \beta\right) & m_{\bar{u}_{3}}^{2}+m_{t}^{2}+\Delta_{\bar{u}}
\end{array}\right)
$$

Diagonalize mass-squared matrix \rightarrow mass eigenstates $\left(m_{t_{1}}^{2}<m_{t_{2}}^{2}, 0 \leq \theta_{t} \leq \pi\right)$:

$$
\binom{\widetilde{t}_{1}}{\widetilde{t}_{2}}=\left(\begin{array}{cc}
\cos \theta_{\overparen{t}} & \sin \theta_{\tilde{t}} \tag{40}\\
-\sin \theta_{t} & \cos \theta_{\tilde{t}}
\end{array}\right)\binom{\widetilde{t}_{L}}{\widetilde{t}_{R}}
$$

RG effects tend to make $m_{\bar{u}_{3}}^{2}<m_{Q_{3}}^{2}$, and both of these lighter than first 2 families. Mixing splits $m_{t_{1}}^{2}$ and $m_{t_{2}}^{2}$ even more.

Often find \widetilde{t}_{1} to be the lightest squark in the model!
Analogous mixing for sbottoms $\widetilde{b}_{1}, \widetilde{b}_{2}$ and staus $\widetilde{\tau}_{1}, \widetilde{\tau}_{2}$.
y_{b}, y_{τ} and a_{b}, a_{τ} in off-diagonal terms: mixing more important at large $\tan \beta$.
$\widetilde{b}_{1}, \widetilde{\tau}_{1}$ can be significantly lighter than 1 st and 2 nd family
Sometimes get $\widetilde{\tau}_{1}$ as lightest sfermion

- e.g., "stau coannihilation region" for dark matter

Summary: the particle content of the MSSM

Names	Spin	P_{R}	Mass Eigenstates	Gauge Eigenstates
Higgs bosons	0	+1	$h^{0} H^{0} A^{0} H^{ \pm}$	$H_{u}^{0} H_{d}^{0} H_{u}^{+} H_{d}^{-}$
squarks	0	-1	$\begin{gathered} \widetilde{u}_{L} \\ \widetilde{s}_{L} \\ \widetilde{u}_{R} \\ \widetilde{t}_{1} \\ \widetilde{t}_{1} \\ \widetilde{t}_{2} \end{gathered} \widetilde{c}_{L} \widetilde{d}_{1} \widetilde{d}_{R} \widetilde{b}_{R}$	$\begin{gathered} " " " \\ \\ \tilde{t}_{L} \widetilde{t}_{R} \widetilde{b}_{L} \widetilde{b}_{R} \end{gathered}$
sleptons	0	-1	$\begin{array}{lll} \widetilde{e}_{L} & \widetilde{e}_{R} & \widetilde{\nu}_{e} \\ \widetilde{\mu}_{L} & \widetilde{\mu}_{R} & \widetilde{\nu}_{\mu} \\ \widetilde{\tau}_{1} & \widetilde{\tau}_{2} & \widetilde{\nu}_{\tau} \end{array}$	$\begin{gathered} " " " \\ \widetilde{\tau}_{L} \widetilde{\tau}_{R} \widetilde{\nu}_{\tau} \\ \hline \end{gathered}$
neutralinos	1/2	-1	$\widetilde{N}_{1} \widetilde{N}_{2} \widetilde{N}_{3} \widetilde{N}_{4}$	$\widetilde{B}^{0} \widetilde{W}^{0} \widetilde{H}_{u}^{0} \widetilde{H}_{d}^{0}$
charginos	1/2	-1	$\widetilde{C}_{1}^{ \pm} \widetilde{C}_{2}^{ \pm}$	$W^{ \pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}$
gluino	1/2	-1	\widetilde{g}	
gravitino/ goldstino	3/2	-1	\widetilde{G}	" "

A schematic sample SUSY spectrum:
Mass

$$
\xlongequal{\widetilde{\mathbf{N}}_{3}, \tilde{\mathbf{N}}_{4}} \xlongequal{\widetilde{\mathbf{c}}_{2}}
$$

$$
\xlongequal{\mathrm{A}^{0}, \mathrm{H}^{0}, \mathrm{H}^{+}}
$$

$$
\underline{\tilde{\mathbf{N}}_{2}} \quad \tilde{\mathbf{c}}_{1}
$$

$$
\frac{\tilde{\mathbf{v}}_{e}, \tilde{\mathbf{e}}_{\mathrm{L}}}{\xlongequal[\tilde{\mathbf{e}}_{\mathrm{R}}]{ }} \frac{\tilde{v}_{\mu}, \tilde{\mu}_{\mathrm{L}}}{\overline{\tilde{\mu}_{\mathrm{R}}}} \frac{\tilde{\tau}_{2}, \tilde{\mathbf{v}}_{\tau}}{\overline{\tilde{\tau}_{1}}}
$$

Some features of this sample spectrum:

- \tilde{N}_{1} is LSP
- \widetilde{t}_{1} and \widetilde{b}_{1} are the lightest squarks
- $\widetilde{\tau}_{1}$ is the lightest charged slepton
- Coloured particles are heavier than uncoloured particles

[^0]: In practice the neutralino and chargino masses and mixing angles are best computed numerically.

