Supersymmetric extensions of the Standard Model

(Lecture 2 of 4)

Heather Logan

Carleton University

Hadron Collider Physics Summer School Fermilab, August 2010

Outline

Lecture 1: Introducing SUSY

Lecture 2: SUSY Higgs sectors

Lecture 3: Superpartner spectra and detection

Lecture 4: Measuring couplings, spins, and masses

In the last lecture we saw the two key features of the MSSM that impact Higgs physics:

- There are two Higgs doublets.
- The scalar potential is constrained by the form of the supersymmetric Lagrangian.

Let's start with a closer look at each of these.

The MSSM requires two Higgs doublets Reason #1: generating quark masses

The SM Higgs doublet is
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
, with $\langle \phi^0 \rangle = v/\sqrt{2}$.

Generate the down-type quark masses:

$$\mathcal{L}_{\text{Yuk}} = -y_d \, \bar{d}_R \Phi^{\dagger} Q_L + \text{h.c.}$$

$$= -y_d \, \bar{d}_R \left(\phi^-, \phi^{0*} \right) \left(\begin{array}{c} u_L \\ d_L \end{array} \right) + \text{h.c.}$$

$$= -y_d \frac{v}{\sqrt{2}} \left(\bar{d}_R d_L + \bar{d}_L d_R \right) + \text{interactions}$$

$$= -m_d \, \bar{d}d + \text{interactions}$$

Generate the up-type quark masses:

$$\mathcal{L}_{\text{Yuk}} = -y_u \, \bar{u}_R \Phi^{\dagger} Q_L + \text{h.c.}?$$

Does not work! Need to put the vev in the upper component of the Higgs doublet.

Heather Logan (Carleton U.)

SUSY (2/4)

Can sort this out by using the conjugate doublet $\tilde{\Phi}$:

[not to be confused with a superpartner....]

$$\tilde{\Phi} \equiv i\sigma_2 \Phi^* = i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \phi^- \\ \phi^{0*} \end{pmatrix} = \begin{pmatrix} \phi^{0*} \\ -\phi^- \end{pmatrix}$$

$$\mathcal{L}_{\text{Yuk}} = -y_u \bar{u}_R \tilde{\Phi}^{\dagger} Q_L + \text{h.c.}$$

$$= -y_u \bar{u}_R \left(\phi^0, -\phi^+ \right) \left(\begin{array}{c} u_L \\ d_L \end{array} \right) + \text{h.c.}$$

$$= -y_u \frac{v}{\sqrt{2}} \left(\bar{u}_R u_L + \bar{u}_L u_R \right) + \text{interactions}$$

$$= -m_u \bar{u}u + \text{interactions}$$

Works fine in the SM!

But in SUSY we can't do this, because \mathcal{L}_{Yuk} comes from $-\frac{1}{2}W^{ij}\psi_i\psi_j + \text{c.c.}$ with $W^{ij} = M^{ij} + y^{ijk}\phi_k$.

W must be analytic in ϕ

→ not allowed to use complex conjugates.

Heather Logan (Carleton U.)

SUSY (2/4)

Instead, need a second Higgs doublet with opposite hypercharge:

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} \qquad \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$$

$$\mathcal{L}_{\text{Yuk}} = -y_d \, \bar{d}_R \, \epsilon_{ij} H_1^i Q_L^j - y_u \, \bar{u}_R \, \epsilon_{ij} H_2^i Q_L^j + \text{h.c.} \qquad \text{ok!}$$

$$= -y_d \frac{v_1}{\sqrt{2}} \bar{d}d - y_u \frac{v_2}{\sqrt{2}} \bar{u}u + \text{interactions}$$

[lepton masses work just like down-type quarks]

Two important features:

- Both doublets contribute to the W mass, so need $v_1^2 + v_2^2 = v_{\text{SM}}^2$. Ratio of vevs is not constrained; define parameter $\tan \beta \equiv v_2/v_1$.
- $\tan \beta$ shows up in couplings when y_i are re-expressed in terms of fermion masses.

$$y_d = \frac{\sqrt{2}m_d}{v\cos\beta} \qquad \qquad y_u = \frac{\sqrt{2}m_u}{v\sin\beta} \qquad \qquad y_\ell = \frac{\sqrt{2}m_\ell}{v\cos\beta}$$

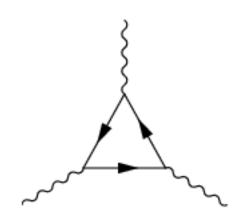
Heather Logan (Carleton U.)

SUSY (2/4)

The MSSM requires two Higgs doublets Reason #2: anomaly cancellation

Chiral fermions (where the left-handed and right-handed fermions have different couplings) can cause chiral anomalies. anomaly diagram \rightarrow

Breaks the gauge symmetry—generally very bad.



Standard Model: chiral anomalies all miraculously cancel within one fermion generation:

pure hypercharge:
$$\sum_{\text{all } f} Y_f^3 = 0$$

hypercharge and QCD :
$$\sum_{\text{all } q} Y_q = 0$$

hypercharge and SU(2):
$$\sum_{d=1}^{\infty} Y_d = 0$$

weak doublets

Higgs has no effect on this since it's not a chiral fermion.

Heather Logan (Carleton U.)

SUSY (2/4)

Supersymmetric models: Higgs is now part of a chiral supermultiplet. Paired up with chiral fermions! (Higgsinos)

The Higgsinos contribute to the chiral anomalies.

One Higgs doublet: carries hypercharge and SU(2) quantum numbers; gives nonzero Y_f^3 and Y_d anomalies.

To solve this, introduce a second Higgs doublet with opposite hypercharge: sum of anomalies cancels.

[This is exactly the same as the requirement from generating up and down quark masses.]

MSSM is the minimal supersymmetric extension of the SM.

- Minimal SUSY Higgs sector is 2 doublets.
- More complicated extensions can have larger Higgs content (but must contain an even number of doublets).

Higgs content of the MSSM

Standard Model:
$$\Phi = \begin{pmatrix} \phi^+ \\ (v + \phi^{0,r} + i\phi^{0,i})/\sqrt{2} \end{pmatrix}$$

- Goldstone bosons $G^+ = \phi^+$, $G^0 = \phi^{0,i}$ "eaten" by W^+ and Z.
- One physical Higgs state $H^0 = \phi^{0,r}$.

MSSM:
$$H_1 = \begin{pmatrix} (v_1 + \phi_1^{0,r} + i\phi_1^{0,i})/\sqrt{2} \\ \phi_1^- \end{pmatrix}$$

$$H_2 = \begin{pmatrix} \phi_2^+ \\ (v_2 + \phi_2^{0,r} + i\phi_2^{0,i})/\sqrt{2} \end{pmatrix} \tan \beta \equiv v_2/v_1$$

- Still have one charged and one neutral Goldstone boson:

$$G^{+} = -\cos\beta \,\phi_{1}^{-*} + \sin\beta \,\phi_{2}^{+} \qquad G^{0} = -\cos\beta \,\phi_{1}^{0,i} + \sin\beta \,\phi_{2}^{0,i}$$

- Orthogonal combinations are physical particles: [mixing angle β] $H^+ = \sin\beta \, \phi_1^{-*} + \cos\beta \, \phi_2^+ \qquad A^0 = \sin\beta \, \phi_1^{0,i} + \cos\beta \, \phi_2^{0,i}$
- Two CP-even neutral physical states mix: [mixing angle α] $h^0 = -\sin\alpha\,\phi_1^{0,r} + \cos\alpha\,\phi_2^{0,r} \qquad H^0 = \cos\alpha\,\phi_1^{0,r} + \sin\alpha\,\phi_2^{0,r}$

Heather Logan (Carleton U.)

SUSY (2/4)

What are these physical states?

Masses and mixing angles are determined by the Higgs potential.

For the most general two-Higgs-doublet model:

$$\mathcal{V} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}]$$

$$+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$$

$$+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} ,$$
from Haber & Davidson, PRD72, 035004 (2005)

MSSM is much more constrained, because of supersymmetry.

Supersymmetric part:

$$\mathcal{L}\supset -W_i^*W_i-rac{1}{2}\sum_a g_a^2(\phi^*T^a\phi)^2$$
 recall $W^i=M^{ij}\phi_j+rac{1}{2}y^{ijk}\phi_j\phi_k$

Heather Logan (Carleton U.)

SUSY (2/4)

The only relevant part of the superpotential is $W = \mu H_1 H_2$. The rest of the SUSY-obeying potential comes from the D (gauge) terms, $V \supset \frac{1}{2} \sum_a g_a^2 (\phi^* T^a \phi)^2$.

$$V_{\text{SUSY}} = |\mu|^2 H_1^{\dagger} H_1 + |\mu|^2 H_2^{\dagger} H_2 + \frac{1}{8} g'^2 \left(H_2^{\dagger} H_2 - H_1^{\dagger} H_1 \right)^2 + \frac{1}{8} g^2 \left(H_1^{\dagger} \sigma^a H_1 + H_2^{\dagger} \sigma^a H_2 \right)^2$$

Note only one unknown parameter, $|\mu|^2!$ (g, g' are measured.)

But there is also SUSY breaking, which contributes three new quadratic terms:

$$V_{\text{breaking}} = m_{H_1}^2 H_1^{\dagger} H_1 + m_{H_2}^2 H_2^{\dagger} H_2 + \left[b \, \epsilon_{ij} H_2^i H_1^j + \text{h.c.} \right]$$

Three more unknown parameters, $m_{H_1}^2$, $m_{H_2}^2$, and b.

Combining and multiplying everything out yields the MSSM Higgs potential, at tree level:

$$V = (|\mu|^{2} + m_{H_{1}}^{2}) \left(|H_{1}^{0}|^{2} + |H_{1}^{-}|^{2} \right) + (|\mu|^{2} + m_{H_{2}}^{2}) \left(|H_{2}^{0}|^{2} + |H_{2}^{+}|^{2} \right)$$

$$+ \left[b \left(H_{2}^{+} H_{1}^{-} - H_{2}^{0} H_{1}^{0} \right) + \text{h.c.} \right]$$

$$+ \frac{1}{8} \left(g^{2} + g'^{2} \right) \left(|H_{2}^{0}|^{2} + |H_{2}^{+}|^{2} - |H_{1}^{0}|^{2} - |H_{1}^{-}|^{2} \right)^{2}$$

$$+ \frac{1}{2} g^{2} \left| H_{2}^{+} H_{1}^{0*} + H_{2}^{0} H_{1}^{-*} \right|^{2}$$

Dimensionful terms: ($|\mu|^2+m_{H_{1,2}}^2$), b set the mass-squared scale. μ terms come from F-terms: SUSY-preserving $m_{H_{1,2}}^2$ and b terms come directly from soft SUSY breaking

Dimensionless terms: fixed by the gauge couplings g and g' D-term contributions: SUSY-preserving

Three relevant unknown parameter combinations: $(|\mu|^2 + m_{H_1}^2)$, $(|\mu|^2 + m_{H_2}^2)$, and b.

[All this is tree-level: it will get modified by radiative corrections.]

Heather Logan (Carleton U.)

SUSY (2/4)

The scalar potential fixes the vacuum expectation values, mass eigenstates, and 3— and 4—Higgs couplings.

Step 1: Find the minimum of the potential using $\frac{\partial V}{\partial H_i} = 0$.

This lets you solve for v_1 and v_2 in terms of the Higgs potential parameters. Usually use these relations to eliminate $(|\mu|^2 + m_{H_2}^2)$ and $(|\mu|^2 + m_{H_2}^2)$ in favor of the vevs.

[Eliminate one unknown: $v_1^2 + v_2^2 = v_{SM}^2$.]

Step 2: Plug in the vevs and collect terms quadratic in the fields. These are the mass terms (and generically include crossed terms like $H_1^+H_2^-$). Write these as $M_{ij}^2\phi_i\phi_j$ and diagonalize the mass-squared matrices to find the mass eigenstates.

Results: Higgs masses and mixing angle

[Only 2 unknowns: $\tan \beta$ and M_{A^0} .]

$$M_{A^0}^2 = \frac{2b}{\sin 2\beta}$$
 $M_{H^\pm}^2 = M_{A^0}^2 + M_W^2$

$$M_{h^0,H^0}^2 = \frac{1}{2} \left(M_{A^0}^2 + M_Z^2 \mp \sqrt{(M_{A^0}^2 + M_Z^2)^2 - 4 M_Z^2 M_{A^0}^2 \cos^2 2\beta} \right)$$
 [By convention, h^0 is lighter than H^0]

Mixing angle for h^0 and H^0 :

$$\frac{\sin 2\alpha}{\sin 2\beta} = -\frac{M_{A^0}^2 + M_Z^2}{M_{H^0}^2 - M_{h^0}^2} \qquad \qquad \frac{\cos 2\alpha}{\cos 2\beta} = -\frac{M_{A^0}^2 - M_Z^2}{M_{H^0}^2 - M_{h^0}^2}$$

[Note $M_W^2=g^2v^2/4$ and $M_Z^2=(g^2+g'^2)v^2/4$: these come from the g^2 and g'^2 terms in the scalar potential.]

- A^0 , H^0 and H^{\pm} masses can be arbitrarily large: grow with $\frac{2b}{\sin 2\beta}$.
- h^0 mass is bounded from above: $M_{h^0} < |\cos 2\beta| M_Z \le M_Z$ (!!)

This is already ruled out by LEP! The MSSM would be dead if not for the large radiative corrections to M_{h0} .

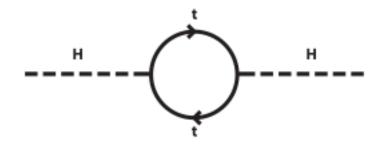
Heather Logan (Carleton U.)

SUSY (2/4)

Mass matrix for $\phi_{1,2}^{0,r}$:

$$\mathcal{M}^{2} = \begin{pmatrix} M_{A}^{2} \sin^{2} \beta + M_{Z}^{2} \cos^{2} \beta & -(M_{A}^{2} + M_{Z}^{2}) \sin \beta \cos \beta \\ -(M_{A}^{2} + M_{Z}^{2}) \sin \beta \cos \beta & M_{A}^{2} \cos^{2} \beta + M_{Z}^{2} \sin^{2} \beta \end{pmatrix}$$

Radiative corrections come mostly from the top and stop loops.



New mass matrix:

$$\mathcal{M}^2 = \mathcal{M}_{\text{tree}}^2 + \begin{pmatrix} \Delta \mathcal{M}_{11}^2 & \Delta \mathcal{M}_{12}^2 \\ \Delta \mathcal{M}_{21}^2 & \Delta \mathcal{M}_{22}^2 \end{pmatrix}$$

н ї () і н

Have to re-diagonalize.

Leading correction to M_{h^0} :

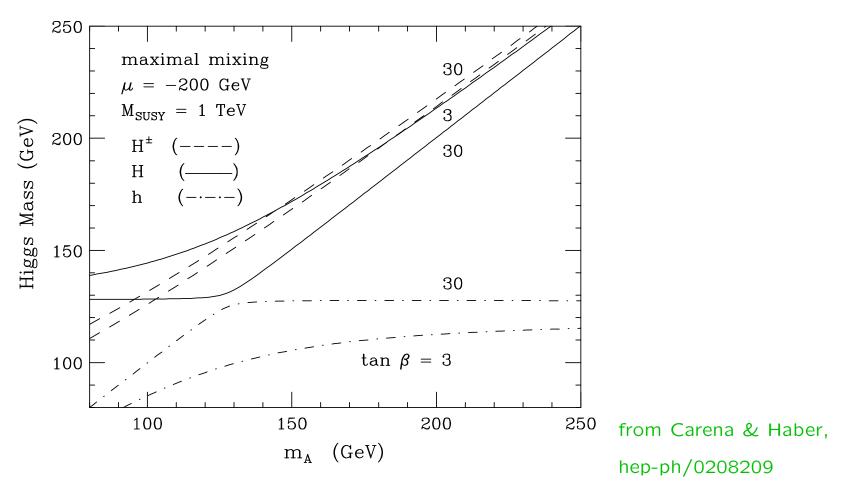
$$\Delta M_{h^0}^2 \simeq \frac{3}{4\pi^2} v^2 y_t^4 \sin^4\beta \ \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

Revised bound (full 1-loop + dominant 2-loop): $M_{h^0} \lesssim 135 \; {\rm GeV}.$

Heather Logan (Carleton U.)

SUSY (2/4)

Higgs masses as a function of M_A [for tan β small (3) and large (30)]



For large M_A :

- M_h asymptotes
- M_{H^0} and M_{H^\pm} become increasingly degenerate with M_A

Heather Logan (Carleton U.)

SUSY (2/4)

Higgs couplings

Higgs couplings to fermions are controlled by the Yukawa Lagrangian,

$$\mathcal{L}_{\mathsf{Yuk}} = -y_{\ell} \, \bar{e}_R \epsilon_{ij} H_1^i L_L^j - y_d \, \bar{d}_R \, \epsilon_{ij} H_1^i Q_L^j - y_u \, \bar{u}_R \, \epsilon_{ij} H_2^i Q_L^j + \text{h.c.}$$

 $\tan \beta$ -dependence shows up in couplings when y_i are re-expressed in terms of fermion masses:

$$y_{\ell} = \frac{\sqrt{2}m_{\ell}}{v\cos\beta} \qquad \qquad y_{d} = \frac{\sqrt{2}m_{d}}{v\cos\beta} \qquad \qquad y_{u} = \frac{\sqrt{2}m_{u}}{v\sin\beta}$$

Higgs couplings to gauge bosons are controlled by the SU(2) structure.

Plugging in the mass eigenstates gives the actual couplings.

Couplings of h^0 (the light Higgs)

$$h^{0}W^{+}W^{-} : igM_{W}g_{\mu\nu}\sin(\beta - \alpha)$$

$$h^{0}ZZ : i\frac{gM_{Z}}{\cos\theta_{W}}g_{\mu\nu}\sin(\beta - \alpha)$$

$$h^{0}\bar{t}t : i\frac{gm_{t}}{2M_{W}}\left[\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)\right]$$

$$h^{0}\bar{b}b : i\frac{gm_{b}}{2M_{W}}\left[\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)\right]$$

 $[h^0\ell^+\ell^-$ coupling has same form as $h^0\bar{b}b]$

Controlled by $\tan \beta$ and the mixing angle α .

In the "decoupling limit" $M_{A^0}\gg M_Z$, $\cos(\beta-\alpha)$ goes to zero:

$$\cos(\beta - \alpha) \simeq \frac{1}{2}\sin 4\beta \frac{M_Z^2}{M_{A^0}^2}$$

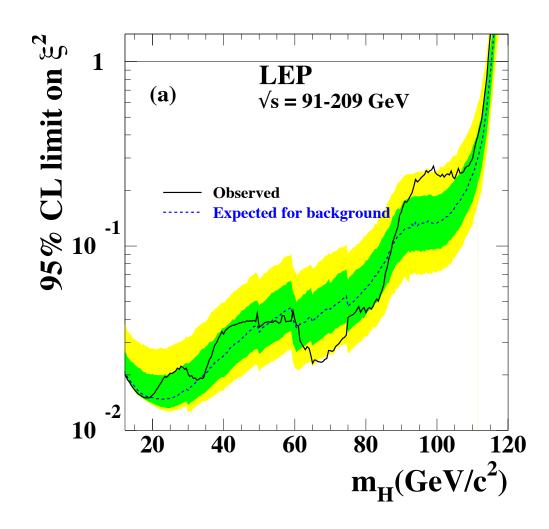
Then all the h^0 couplings approach their SM values!

Heather Logan (Carleton U.)

SUSY (2/4)

LEP searches for h^0

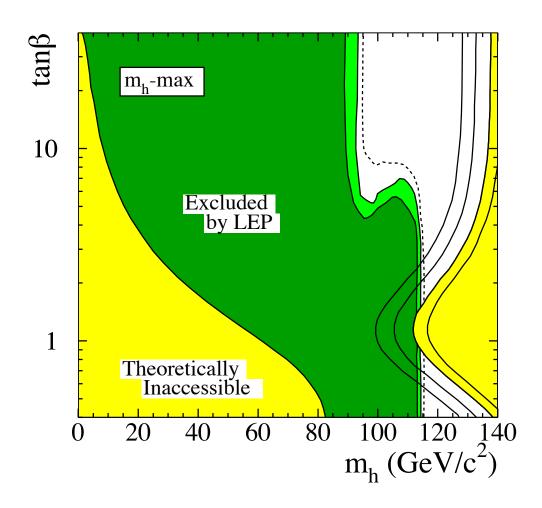
 $e^+e^- \to Z^* \to Zh^0$: coupling $\frac{igM_Z}{\cos\theta_W}g_{\mu\nu}\sin(\beta-\alpha)$ - Production can be suppressed compared to SM Higgs



LEP searches for h^0

$$e^+e^- \to Z^* \to h^0 A^0$$
: coupling $\propto \cos(\beta - \alpha)$

- Complementary to Zh^0
- Combine searches for overall MSSM exclusion



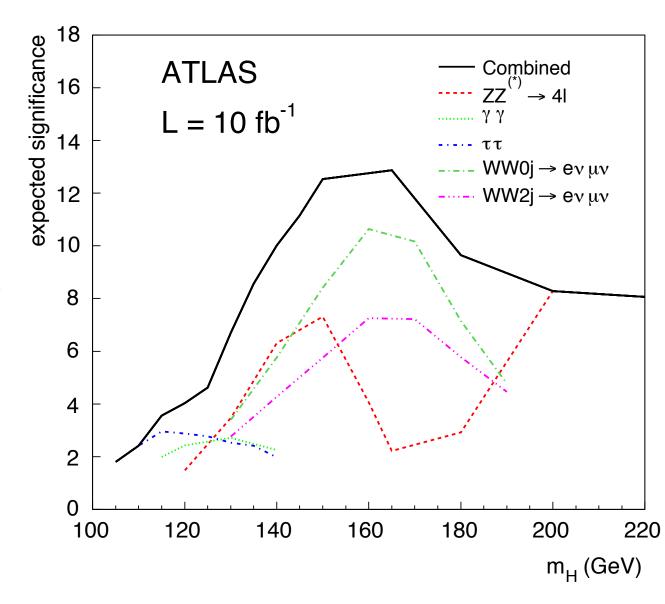
Heather Logan (Carleton U.)

SUSY (2/4)

LHC searches for h^0

Decoupling limit (large M_{A^0}):

- h^0 search basically the same as SM Higgs search
- Mass \lesssim 135 GeV: lower-mass search channels most important
- Challenging channels



SM Higgs significance, ATLAS CSC book, arXiv:0901.0512

Couplings of H^0 and A^0

$$H^{0}W^{+}W^{-} : igM_{W}g_{\mu\nu}\cos(\beta - \alpha)$$

$$H^{0}ZZ : i\frac{gM_{Z}}{\cos\theta_{W}}g_{\mu\nu}\cos(\beta - \alpha)$$

$$H^{0}\overline{t}t : i\frac{gm_{t}}{2M_{W}}\left[-\cot\beta\sin(\beta - \alpha) + \cos(\beta - \alpha)\right]$$

$$H^{0}\overline{b}b : i\frac{gm_{b}}{2M_{W}}\left[\tan\beta\sin(\beta - \alpha) + \cos(\beta - \alpha)\right]$$

$$A^0 \overline{t}t$$
 : $\frac{gm_t}{2M_W} \cot \beta \gamma^5$ $A^0 \overline{b}b$: $\frac{gm_b}{2M_W} \tan \beta \gamma^5$

Couplings to leptons have same form as $\overline{b}b$.

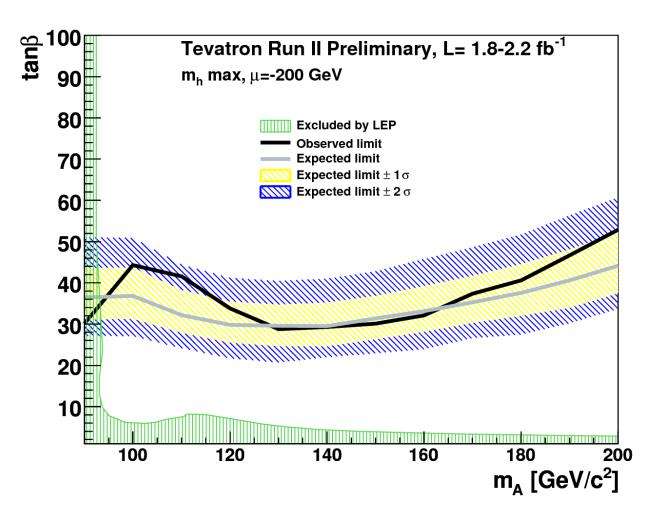
Remember the decoupling limit $\cos(\beta - \alpha) \rightarrow 0$:

- $\bar{b}b$ and au au couplings go like aneta: can be strongly enhanced.
- $\bar{t}t$ couplings go like cot β : can be strongly suppressed.

Can't enhance $\bar{t}t$ coupling much: perturbativity limit.

Tevatron searches for H^0 and A^0

Use bbH^0 , bbA^0 couplings: enhanced at large $\tan \beta$ - $bb \to H^0$, A^0 , decays to $\tau\tau$ (most sensitive) or bb



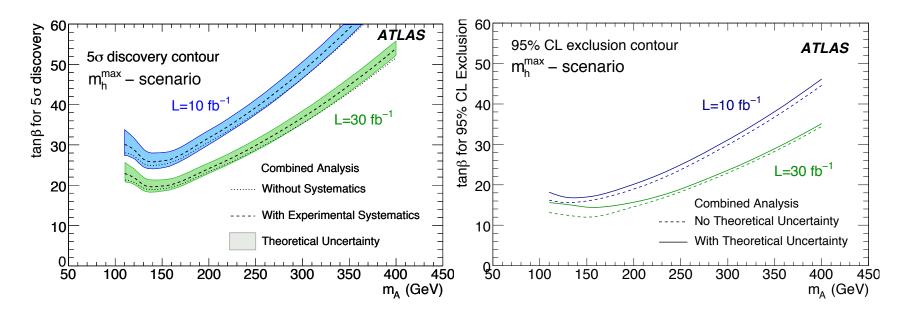
au au channel, CDF + DZero, arXiv:1003.3363

SUSY (2/4)

LHC searches for H^0 and A^0

Same idea, higher mass reach because of higher beam energy and luminosity

 $bb \to H^0, A^0 \to \mu\mu$ channel: rare decay but great mass resolution!



 $\mu\mu$ channel, ATLAS CSC book, arXiv:0901.0512

Couplings of H^{\pm}

$$H^+\tau^-\bar{\nu}$$
: $i\frac{g}{\sqrt{2}M_W}[m_{\tau}\tan\beta P_R]$

Important for decays

$$H^{+}\bar{t}b$$
: $i\frac{g}{\sqrt{2}M_W}V_{tb}\left[m_t\cot\beta P_L + m_b\tan\beta P_R\right]$

Important for production and decays $H^+\bar{c}s$ coupling has same form

Couplings to another Higgs and a gauge boson are usual SU(2) form.

$$\gamma H^{+}H^{-}, ZH^{+}H^{-}$$

Search for pair production at LEP

$$W^{+}H^{-}A^{0}, W^{+}H^{-}H^{0}$$

Associated production at LHC

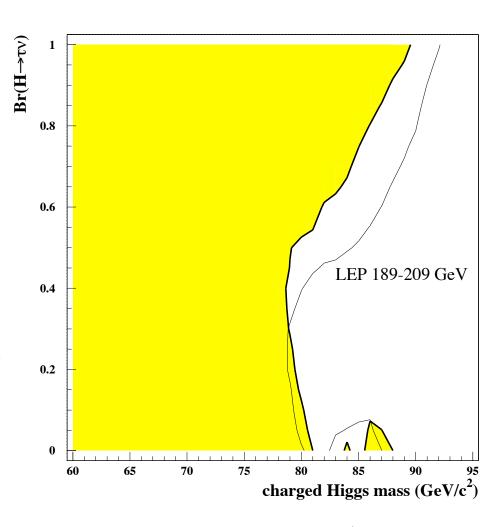
LEP searches for H^{\pm}

$$e^{+}e^{-} \to \gamma^{*}, Z^{*} \to H^{+}H^{-}$$

 H^\pm decays to au
u or cs - Assume no other decays

Major background from W^+W^- especially for $H^+ \to cs$

Limit $M_{H^+} > 78.6 - 89.6 \text{ GeV}$



LEP combined, hep-ex/0107031

Tevatron searches for H^{\pm}

Look for $t \to H^+b$.

Coupling $\frac{igV_{tb}}{\sqrt{2}M_W}\left[m_t\cot\beta P_L+m_b\tan\beta P_R\right]$

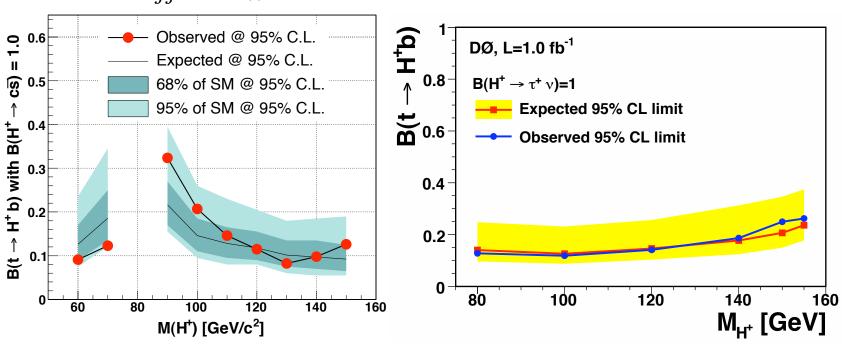
- Sensitive at high and low $\tan \beta$.
- Decays to $\tau \nu$ or cs.

$$BR(H^+ \to c\bar{s}) = 1$$
:

Look for $M_{jj} \neq M_W$.

 $BR(H^{+} \to \tau \nu) > 0$:

Look at final-state fractions.



CDF, PRL103, 101803 (2009)

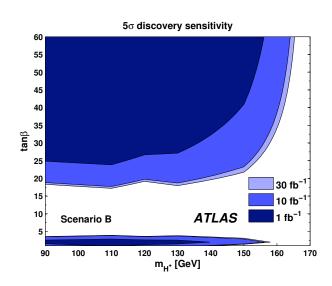
SUSY (2/4)

DZero, arXiv:0908.1811

Heather Logan (Carleton U.)

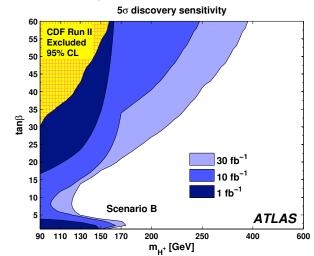
LHC searches for H^{\pm}

Light charged Higgs: top decay $t \to H^+ b$ with $H^+ \to \tau \nu$.



ATLAS CSC book, arXiv:0901.0512

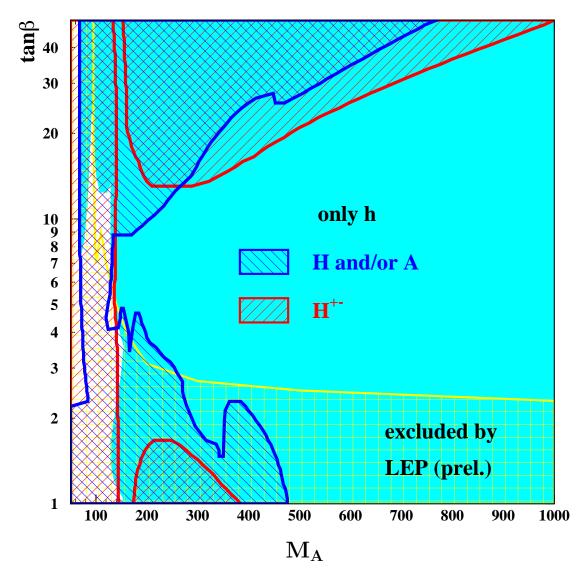
Heavy charged Higgs: associated production $pp \to t\,H^-$. most of sensitivity with $H^+ \to \tau \nu$; $H^+ \to t\bar{b}$ contributes but large background.



Heather Logan (Carleton U.)

SUSY (2/4)

Search for all the MSSM Higgs bosons at LHC



ATLAS, 300 fb $^{-1}$, $m_h^{\rm max}$ scenario. From Haller, hep-ex/0512042

Heather Logan (Carleton U.)

SUSY (2/4)

What if only h^0 is accessible?

Try to distinguish it from the SM Higgs using coupling measurements.

$$h^{0}W^{+}W^{-} : igM_{W}g_{\mu\nu}\sin(\beta - \alpha)$$

$$h^{0}ZZ : i\frac{gM_{Z}}{\cos\theta_{W}}g_{\mu\nu}\sin(\beta - \alpha)$$

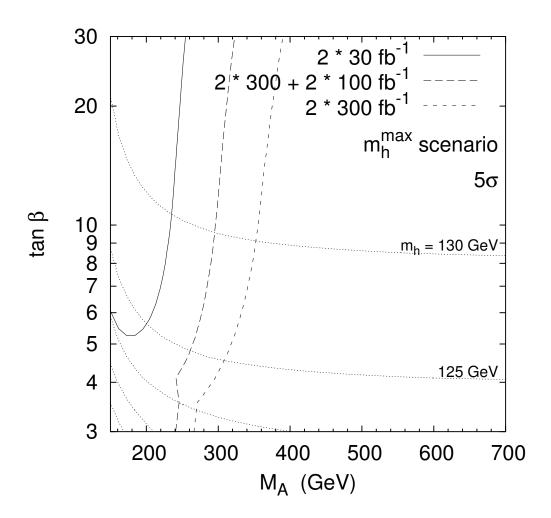
$$h^{0}\bar{t}t : i\frac{gm_{t}}{2M_{W}}\left[\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)\right]$$

$$h^{0}\bar{b}b : i\frac{gm_{b}}{2M_{W}}\left[\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)\right]$$

Other couplings:

- ggh^0 : sensitive to $h^0\bar{t}t$ coupling, top squarks in the loop.
- $h^0\gamma\gamma$: sensitive to $h^0W^+W^-$, $h^0\bar{t}t$, couplings, charginos and top squarks in the loop.

Coupling fit at the LHC: Look for discrepancies from SM predictions

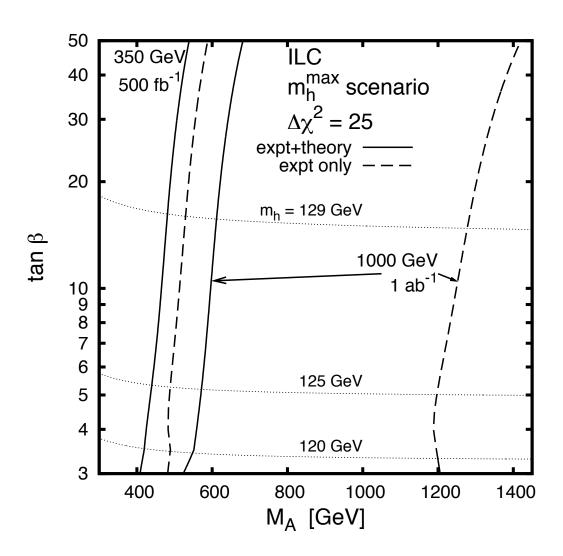


Dührssen et al, PRD70, 113009 (2004)

Heather Logan (Carleton U.)

SUSY (2/4)

Major motivation for ILC: probe $h^{\mathbb{O}}$ couplings with much higher precision.



Logan & Droll, PRD76, 015001 (2007)

Going beyond the MSSM

Simplest extension of MSSM is to add an extra Higgs particle.

- NMSSM, nMSSM, MNSSM, etc.

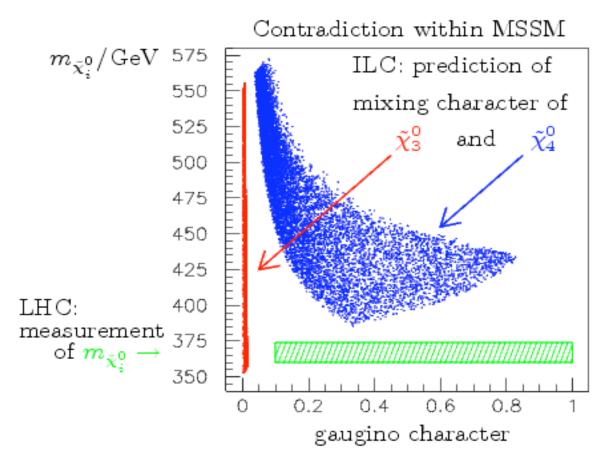
New chiral supermultiplet S

- Gives an "extra Higgs"
- Couples only to other Higgses (before mixing): hard to detect, can be quite light
- Exotic decays $h^0 \to ss$
- Decays $s \to \bar{b}b$, $\tau \tau$, $\gamma \gamma$ made possible by mixing

$$E_T \leftarrow \frac{\tau}{\tau} \leftarrow -\frac{a^0}{h^0} - \frac{a^0}{h^0} \rightarrow \mu$$

Lisanti & Wacker, PRD79, 115006 (2009)

New chiral supermultiplet S also gives an extra neutralino \tilde{s} - Makes the neutralino sector more complicated: may need LHC and ILC synergy to unravel.

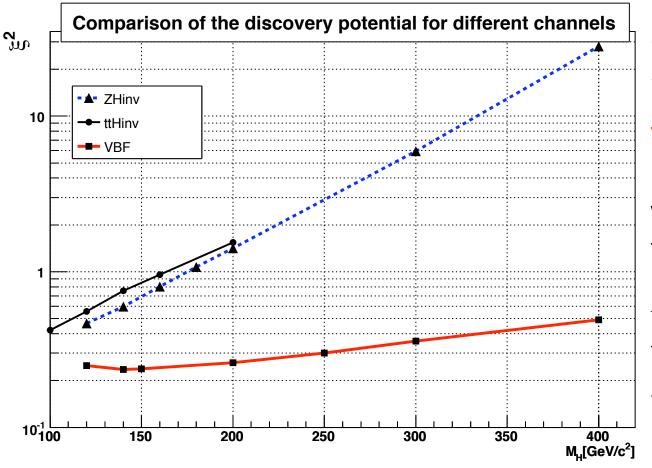


Moortgat-Pick et al, hep-ph/0508313

New chiral supermultiplet S also gives an extra neutralino \tilde{s}

- Dark matter particle, can be quite light
- Invisible Higgs decay $h^0 o \tilde{s}\tilde{s}$ if light enough

Plot: ATLAS with 30 fb⁻¹. Scaling factor $\xi^2 \sigma_{SM} \equiv \sigma \times BR(H \to invis)$



$$ZH_{\mathsf{inv}}$$
 - uses $Z \to \ell^+\ell^-$

VBF looks very good, but not clear how well events can be triggered.

 $t\bar{t}H_{\text{inv}}$ — may be room for improvement? ATLAS study in progress.

[ATL-PHYS-PUB-2006-009]

Heather Logan (Carleton U.)

SUSY (2/4)

Summary

MSSM Higgs sector has a rich phenomenology

One Higgs boson h^0

- Can be very similar to SM Higgs
- Mass is limited by MSSM relations, \lesssim 135 GeV

Set of new Higgs bosons H^0 , A^0 , and H^{\pm}

- Can be light or heavy
- Search strategy depends on mass, $\tan \beta$

Beyond the MSSM:

- Usually one more new Higgs
- Can have dramatic effect on Higgs phenomenology