SUSY phenomenology Part 2

Heather Logan Carleton University

PHYS 6602 (Winter 2011)

We have seen the two key features of the MSSM that impact Higgs physics:

- There are two Higgs doublets.

- The scalar potential is constrained by the form of the supersymmetric Lagrangian.

Let's start with a closer look at each of these.

The MSSM requires two Higgs doublets Reason #1: generating quark masses

The SM Higgs doublet is
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
, with $\langle \phi^0 \rangle = v/\sqrt{2}$.

Generate the down-type quark masses:

$$\begin{aligned} \mathcal{L}_{\mathsf{Yuk}} &= -y_d \, \bar{d}_R \Phi^{\dagger} Q_L + \text{h.c.} \\ &= -y_d \, \bar{d}_R \left(\phi^-, \phi^{0*} \right) \left(\begin{array}{c} u_L \\ d_L \end{array} \right) + \text{h.c.} \\ &= -y_d \frac{v}{\sqrt{2}} \left(\bar{d}_R d_L + \bar{d}_L d_R \right) + \text{interactions} \\ &= -m_d \, \bar{d}d + \text{interactions} \end{aligned}$$

Generate the up-type quark masses:

$$\mathcal{L}_{Yuk} = -y_u \bar{u}_R \Phi^{\dagger} Q_L + h.c.?$$

Does not work! Need to put the vev in the upper component of the Higgs doublet.

Heather Logan (Carleton U.)SUSY phenomenologyPHYS 6602 W11

Can sort this out by using the conjugate doublet $\tilde{\Phi}$:

[not to be confused with a superpartner....]

$$\tilde{\Phi} \equiv i\sigma_2 \Phi^* = i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \phi^- \\ \phi^{0*} \end{pmatrix} = \begin{pmatrix} \phi^{0*} \\ -\phi^- \end{pmatrix}$$

$$\mathcal{L}_{\mathsf{Yuk}} = -y_u \bar{u}_R \tilde{\Phi}^{\dagger} Q_L + \text{h.c.}$$

= $-y_u \bar{u}_R \left(\phi^0, -\phi^+ \right) \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \text{h.c.}$
= $-y_u \frac{v}{\sqrt{2}} \left(\bar{u}_R u_L + \bar{u}_L u_R \right) + \text{interactions}$
= $-m_u \bar{u} u + \text{interactions}$

Works fine in the SM!

But in SUSY we can't do this, because \mathcal{L}_{Yuk} comes from $-\frac{1}{2}W^{ij}\psi_i\psi_j + \text{c.c.}$ with $W^{ij} = M^{ij} + y^{ijk}\phi_k$.

 $W \text{ must be analytic in } \phi \\ \longrightarrow \text{ not allowed to use complex conjugates.}$

Heather Logan (Carleton U.) SUSY phenomenology

Instead, need a second Higgs doublet with opposite hypercharge:

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \\ H_1^- \end{pmatrix} \qquad \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \\ H_2^0 \end{pmatrix}$$

$$\mathcal{L}_{Yuk} = -y_d \bar{d}_R \epsilon_{ij} H_1^i Q_L^j - y_u \bar{u}_R \epsilon_{ij} H_2^i Q_L^j + \text{h.c.}$$
 ok!
$$= -y_d \frac{v_1}{\sqrt{2}} \bar{d}d - y_u \frac{v_2}{\sqrt{2}} \bar{u}u + \text{interactions}$$

[lepton masses work just like down-type quarks]

Two important features:

- Both doublets contribute to the W mass, so need $v_1^2 + v_2^2 = v_{SM}^2$. Ratio of vevs is not constrained; define parameter $\tan \beta \equiv v_2/v_1$.

- $\tan \beta$ shows up in couplings when y_i are re-expressed in terms of fermion masses.

The MSSM requires two Higgs doublets Reason #2: anomaly cancellation

Chiral fermions (where the left-handed and righthanded fermions have different couplings) can cause chiral anomalies. anomaly diagram \rightarrow

Breaks the gauge symmetry—generally very bad.

Standard Model: chiral anomalies all miraculously cancel within one fermion generation:

pure hypercharge : $\sum_{all f} Y_f^3 = 0$ hypercharge and QCD : $\sum_{all q} Y_q = 0$ hypercharge and SU(2) : $\sum_{weak doublets} Y_d = 0$

Higgs has no effect on this since it's not a chiral fermion.

Heather Logan (Carleton U.)

SUSY phenomenology

Supersymmetric models: Higgs is now part of a chiral supermultiplet. Paired up with chiral fermions! (Higgsinos)

The Higgsinos contribute to the chiral anomalies.

One Higgs doublet: carries hypercharge and SU(2) quantum numbers; gives nonzero Y_f^3 and Y_d anomalies.

To solve this, introduce a second Higgs doublet with opposite hypercharge: sum of anomalies cancels.

[This is exactly the same as the requirement from generating up and down quark masses.]

MSSM is the minimal supersymmetric extension of the SM.

- Minimal SUSY Higgs sector is 2 doublets.
- More complicated extensions can have larger Higgs content (but must contain an even number of doublets).

Higgs content of the MSSM

Standard Model:

$$\Phi = \left(\begin{array}{c} \phi^+ \\ (v + \phi^{0,r} + i\phi^{0,i})/\sqrt{2} \end{array} \right)$$

- Goldstone bosons $G^+ = \phi^+$, $G^0 = \phi^{0,i}$ "eaten" by W^+ and Z.
- One physical Higgs state $H^0 = \phi^{0,r}$.

MSSM:

$$H_{1} = \begin{pmatrix} (v_{1} + \phi_{1}^{0,r} + i\phi_{1}^{0,i})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$

$$H_{2} = \begin{pmatrix} \phi_{2}^{+} \\ (v_{2} + \phi_{2}^{0,r} + i\phi_{2}^{0,i})/\sqrt{2} \end{pmatrix}$$

$$\tan\beta \equiv v_{2}/v_{1}$$

- Still have one charged and one neutral Goldstone boson: $G^{+} = -\cos\beta \phi_{1}^{-*} + \sin\beta \phi_{2}^{+} \qquad G^{0} = -\cos\beta \phi_{1}^{0,i} + \sin\beta \phi_{2}^{0,i}$ - Orthogonal combinations are physical particles: [mixing angle β] $H^+ = \sin \beta \phi_1^{-*} + \cos \beta \phi_2^+$ $A^0 = \sin \beta \phi_1^{0,i} + \cos \beta \phi_2^{0,i}$ - Two CP-even neutral physical states mix: [mixing angle α] $h^{0} = -\sin \alpha \phi_{1}^{0,r} + \cos \alpha \phi_{2}^{0,r}$ $H^{0} = \cos \alpha \phi_{1}^{0,r} + \sin \alpha \phi_{2}^{0,r}$

Heather Logan (Carleton U.) SUSY phenomenology

What are these physical states?

Masses and mixing angles are determined by the Higgs potential.

For the most general two-Higgs-doublet model:

MSSM is much more constrained, because of supersymmetry.

Supersymmetric part:

$$\mathcal{L} \supset -W_i^* W_i - rac{1}{2} \sum_a g_a^2 (\phi^* T^a \phi)^2$$

recall $W^i = M^{ij}\phi_j + \frac{1}{2}y^{ijk}\phi_j\phi_k$

Heather Logan (Carleton U.)SUSY phenomenologyPHYS 6602 W11

The only relevant part of the superpotential is $W = \mu H_1 H_2$. The rest of the SUSY-obeying potential comes from the D (gauge) terms, $V \supset \frac{1}{2} \sum_a g_a^2 (\phi^* T^a \phi)^2$.

$$V_{\text{SUSY}} = |\mu|^2 H_1^{\dagger} H_1 + |\mu|^2 H_2^{\dagger} H_2 + \frac{1}{8} g'^2 \left(H_2^{\dagger} H_2 - H_1^{\dagger} H_1 \right)^2 + \frac{1}{8} g^2 \left(H_1^{\dagger} \sigma^a H_1 + H_2^{\dagger} \sigma^a H_2 \right)^2$$

Note only one unknown parameter, $|\mu|^2!$ (g, g' are measured.)

But there is also SUSY breaking, which contributes three new quadratic terms:

$$V_{\text{breaking}} = m_{H_1}^2 H_1^{\dagger} H_1 + m_{H_2}^2 H_2^{\dagger} H_2 + \left[b \epsilon_{ij} H_2^i H_1^j + \text{h.c.} \right]$$

Fhree more unknown parameters, $m_{H_1}^2$, $m_{H_2}^2$, and b.

Heather Logan (Carleton U.) SUSY phenomenology

Combining and multiplying everything out yields the MSSM Higgs potential, at tree level:

$$V = (|\mu|^{2} + m_{H_{1}}^{2}) \left(|H_{1}^{0}|^{2} + |H_{1}^{-}|^{2} \right) + (|\mu|^{2} + m_{H_{2}}^{2}) \left(|H_{2}^{0}|^{2} + |H_{2}^{+}|^{2} \right) + \left[b \left(H_{2}^{+} H_{1}^{-} - H_{2}^{0} H_{1}^{0} \right) + \text{h.c.} \right] + \frac{1}{8} \left(g^{2} + g'^{2} \right) \left(|H_{2}^{0}|^{2} + |H_{2}^{+}|^{2} - |H_{1}^{0}|^{2} - |H_{1}^{-}|^{2} \right)^{2} + \frac{1}{2} g^{2} \left| H_{2}^{+} H_{1}^{0*} + H_{2}^{0} H_{1}^{-*} \right|^{2}$$

Dimensionful terms: $(|\mu|^2 + m_{H_{1,2}}^2)$, *b* set the mass-squared scale. μ terms come from F-terms: SUSY-preserving $m_{H_{1,2}}^2$ and *b* terms come directly from soft SUSY breaking Dimensionless terms: fixed by the gauge couplings *g* and *g'* D-term contributions: SUSY-preserving

Three relevant unknown parameter combinations: $(|\mu|^2 + m_{H_1}^2)$, $(|\mu|^2 + m_{H_2}^2)$, and b.

[All this is tree-level: it will get modified by radiative corrections.]

Heather Logan (Carleton U.)SUSY phenomenologyPHYS 6602 W11

The scalar potential fixes the vacuum expectation values, mass eigenstates, and 3– and 4–Higgs couplings.

Step 1: Find the minimum of the potential using $\frac{\partial V}{\partial H_i} = 0$. This lets you solve for v_1 and v_2 in terms of the Higgs potential parameters. Usually use these relations to eliminate $(|\mu|^2 + m_{H_1}^2)$ and $(|\mu|^2 + m_{H_2}^2)$ in favor of the vevs. [Eliminate one unknown: $v_1^2 + v_2^2 = v_{SM}^2$.]

Step 2: Plug in the vevs and collect terms quadratic in the fields. These are the mass terms (and generically include crossed terms like $H_1^+H_2^-$). Write these as $M_{ij}^2\phi_i\phi_j$ and diagonalize the mass-squared matrices to find the mass eigenstates. Results: Higgs masses and mixing angle

[Only 2 unknowns: $\tan\beta$ and $M_{A^{\circ}}$.]

$$M_{A^0}^2 = \frac{2b}{\sin 2\beta} \qquad \qquad M_{H^{\pm}}^2 = M_{A^0}^2 + M_W^2$$

 $M_{h^0,H^0}^2 = \frac{1}{2} \left(M_{A^0}^2 + M_Z^2 \mp \sqrt{(M_{A^0}^2 + M_Z^2)^2 - 4M_Z^2 M_{A^0}^2 \cos^2 2\beta} \right)$ [By convention, h^0 is lighter than H^0]

Mixing angle for h^0 and H^0 :

$$\frac{\sin 2\alpha}{\sin 2\beta} = -\frac{M_{A^0}^2 + M_Z^2}{M_{H^0}^2 - M_{h^0}^2} \qquad \qquad \frac{\cos 2\alpha}{\cos 2\beta} = -\frac{M_{A^0}^2 - M_Z^2}{M_{H^0}^2 - M_{h^0}^2}$$

[Note $M_W^2 = g^2 v^2/4$ and $M_Z^2 = (g^2 + g'^2)v^2/4$: these come from the g^2 and g'^2 terms in the scalar potential.]

- A^0 , H^0 and H^{\pm} masses can be arbitrarily large: grow with $\frac{2b}{\sin 2\beta}$.

- h^0 mass is bounded from above: $M_{h^0} < |\cos 2\beta| M_Z \le M_Z$ (!!)

This is already ruled out by LEP! The MSSM would be dead if not for the large radiative corrections to M_{h0} .

Heather Logan (Carleton U.)SUSY phenomenologyPHYS 6602 W11

Mass matrix for $\phi_{1,2}^{0,r}$:

$$\mathcal{M}^2 = \begin{pmatrix} M_A^2 \sin^2 \beta + M_Z^2 \cos^2 \beta & -(M_A^2 + M_Z^2) \sin \beta \cos \beta \\ -(M_A^2 + M_Z^2) \sin \beta \cos \beta & M_A^2 \cos^2 \beta + M_Z^2 \sin^2 \beta \end{pmatrix}$$

Radiative corrections come mostly from the top and stop loops.

New mass matrix:

$$\mathcal{M}^{2} = \mathcal{M}^{2}_{\text{tree}} + \begin{pmatrix} \Delta \mathcal{M}^{2}_{11} & \Delta \mathcal{M}^{2}_{12} \\ \Delta \mathcal{M}^{2}_{21} & \Delta \mathcal{M}^{2}_{22} \end{pmatrix}$$

Have to re-diagonalize.

Leading correction to M_{h^0} :

$$\Delta M_{h^0}^2 \simeq \frac{3}{4\pi^2} v^2 y_t^4 \sin^4 \beta \ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

Revised bound (full 1-loop + dominant 2-loop): $M_{h^0} \lesssim 135$ GeV.

Heather Logan (Carleton U.)

SUSY phenomenology

Higgs masses as a function of M_A [for tan β small (3) and large (30)]

For large M_A :

- M_h asymptotes
- $M_{H^{\rm 0}}$ and $M_{H^{\rm +}}$ become increasingly degenerate with M_A

Heather Logan (Carleton U.)

SUSY phenomenology

Higgs couplings

Higgs couplings to fermions are controlled by the Yukawa Lagrangian,

$$\mathcal{L}_{\mathsf{Yuk}} = -y_{\ell} \bar{e}_R \epsilon_{ij} H_1^i L_L^j - y_d \bar{d}_R \epsilon_{ij} H_1^i Q_L^j - y_u \bar{u}_R \epsilon_{ij} H_2^i Q_L^j + \text{h.c.}$$

tan β -dependence shows up in couplings when y_i are re-expressed in terms of fermion masses:

$$y_{\ell} = \frac{\sqrt{2}m_{\ell}}{v_{\text{SM}}\cos\beta} \qquad \qquad y_{d} = \frac{\sqrt{2}m_{d}}{v_{\text{SM}}\cos\beta} \qquad \qquad y_{u} = \frac{\sqrt{2}m_{u}}{v_{\text{SM}}\sin\beta}$$

Higgs couplings to gauge bosons are controlled by the SU(2) structure.

Plugging in the mass eigenstates gives the actual couplings.

Couplings of h^0 (the light Higgs)

$$\begin{split} h^{0}W^{+}W^{-} &: igM_{W}g_{\mu\nu}\sin(\beta-\alpha) \\ h^{0}ZZ &: i\frac{gM_{Z}}{\cos\theta_{W}}g_{\mu\nu}\sin(\beta-\alpha) \\ h^{0}\overline{t}t &: i\frac{gm_{t}}{2M_{W}}\left[\sin(\beta-\alpha)+\cot\beta\cos(\beta-\alpha)\right] \\ h^{0}\overline{b}b &: i\frac{gm_{b}}{2M_{W}}\left[\sin(\beta-\alpha)-\tan\beta\cos(\beta-\alpha)\right] \\ \end{split}$$

Controlled by $\tan \beta$ and the mixing angle α .

In the "decoupling limit" $M_{A^0} \gg M_Z$, $\cos(\beta - \alpha)$ goes to zero:

$$\cos(\beta - \alpha) \simeq \frac{1}{2}\sin 4\beta \frac{M_Z^2}{M_{A^0}^2}$$

Then all the h^0 couplings approach their SM values!

Heather Logan (Carleton U.) SUSY phenomenology

LEP searches for h^0

 $e^+e^- \rightarrow Z^* \rightarrow Zh^0$: coupling $\frac{igM_Z}{\cos\theta_W}g_{\mu\nu}\sin(\beta - \alpha)$ - Production can be suppressed compared to SM Higgs

Heather Logan (Carleton U.)

SUSY phenomenology

LEP searches for h^0

$$e^+e^- \rightarrow Z^* \rightarrow h^0 A^0$$
: coupling $\propto \cos(\beta - \alpha)$

- Complementary to Zh^0
- Combine searches for overall MSSM exclusion

Heather Logan (Carleton U.)

SUSY phenomenology

LHC searches for h^0

Decoupling limit (large M_{A^0}):

- h^0 search basically the same as SM Higgs search

- Mass $\lesssim 135~{\rm GeV}$: lower-mass search channels most important

- Challenging channels

Heather Logan (Carleton U.)

SUSY phenomenology

Couplings of H^0 and A^0

$$H^{0}W^{+}W^{-} : igM_{W}g_{\mu\nu}\cos(\beta - \alpha)$$

$$H^{0}ZZ : i\frac{gM_{Z}}{\cos\theta_{W}}g_{\mu\nu}\cos(\beta - \alpha)$$

$$H^{0}\overline{t}t : i\frac{gm_{t}}{2M_{W}}\left[-\cot\beta\sin(\beta - \alpha) + \cos(\beta - \alpha)\right]$$

$$H^{0}\overline{b}b : i\frac{gm_{b}}{2M_{W}}\left[\tan\beta\sin(\beta - \alpha) + \cos(\beta - \alpha)\right]$$

$$A^{0}\overline{t}t : \frac{gm_{t}}{2M_{W}} \cot\beta\gamma^{5} \qquad A^{0}\overline{b}b : \frac{gm_{b}}{2M_{W}} \tan\beta\gamma^{5}$$

Couplings to leptons have same form as $\overline{b}b$.

Remember the decoupling limit $\cos(\beta - \alpha) \rightarrow 0$:

- $\overline{b}b$ and $\tau\tau$ couplings go like tan β : can be strongly enhanced.
- $\overline{t}t$ couplings go like $\cot\beta$: can be strongly suppressed.

Can't enhance $\bar{t}t$ coupling much: perturbativity limit.

Tevatron searches for H^0 and A^0

Use bbH^0 , bbA^0 couplings: enhanced at large tan β - $bb \rightarrow H^0$, A^0 , decays to $\tau\tau$ (most sensitive) or bb

 $\tau\tau$ channel, CDF + DZero, arXiv:1003.3363

SUSY phenomenology

LHC searches for H^0 and A^0

Same idea, higher mass reach because of higher beam energy and luminosity

 $bb \rightarrow H^0, A^0 \rightarrow \mu\mu$ channel: rare decay but great mass resolution!

 $\mu\mu$ channel, ATLAS CSC book, arXiv:0901.0512

Couplings of H^{\pm}

$$H^+ \tau^- \overline{\nu}$$
 : $i \frac{g}{\sqrt{2}M_W} [m_\tau \tan \beta P_R]$

Important for decays

$$H^+ \overline{t} b$$
 : $i \frac{g}{\sqrt{2}M_W} V_{tb} \left[m_t \cot \beta P_L + m_b \tan \beta P_R \right]$

Important for production and decays

 $H^+ \overline{c}s$ coupling has same form

Couplings to another Higgs and a gauge boson are usual SU(2) form.

 $\gamma H^+ H^-$, $ZH^+ H^-$ Search for pair production at LEP

 $W^+H^-A^0$, $W^+H^-H^0$ Associated production at LHC

LEP searches for H^{\pm}

Heather Logan (Carleton U.)

Tevatron searches for H^{\pm}

Look for $t \to H^+ b$. - Sensitive at high and low tan β . Coupling $\frac{igV_{tb}}{\sqrt{2}M_W} [m_t \cot \beta P_L + m_b \tan \beta P_R]$

- Decays to $\tau \nu$ or cs.

CDF, PRL103, 101803 (2009)

DZero, arXiv:0908.1811

Heather Logan (Carleton U.)

SUSY phenomenology

LHC searches for H^{\pm}

Light charged Higgs: top decay $t \to H^+ b$ with $H^+ \to \tau \nu$.

Heavy charged Higgs: associated production $pp \rightarrow t H^-$. most of sensitivity with $H^+ \rightarrow \tau \nu$; $H^+ \rightarrow t\bar{b}$ contributes but large background.

Heather Logan (Carleton U.)

SUSY phenomenology

Search for all the MSSM Higgs bosons at LHC

ATLAS, 300 fb⁻¹, $m_h^{\rm max}$ scenario. From Haller, hep-ex/0512042

Heather Logan (Carleton U.)

SUSY phenomenology

What if only h^0 is accessible?

Try to distinguish it from the SM Higgs using coupling measurements.

$$h^{0}W^{+}W^{-} : igM_{W}g_{\mu\nu}\sin(\beta - \alpha)$$

$$h^{0}ZZ : i\frac{gM_{Z}}{\cos\theta_{W}}g_{\mu\nu}\sin(\beta - \alpha)$$

$$h^{0}\overline{t}t : i\frac{gm_{t}}{2M_{W}}[\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)]$$

$$h^{0}\overline{b}b : i\frac{gm_{b}}{2M_{W}}[\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)]$$

Other couplings:

- ggh^0 : sensitive to $h^0 \bar{t}t$ coupling, top squarks in the loop. - $h^0 \gamma \gamma$: sensitive to $h^0 W^+ W^-$, $h^0 \bar{t}t$, couplings, charginos and top squarks in the loop.

Coupling fit at the LHC: Look for discrepancies from SM predictions

Dührssen et al, PRD70, 113009 (2004)

Major motivation for ILC: probe h^0 couplings with much higher precision.

Logan & Droll, PRD76, 015001 (2007)

SUSY phenomenology

Going beyond the MSSM

Simplest extension of MSSM is to add an extra Higgs particle.

- NMSSM, nMSSM, MNSSM, etc.

New chiral supermultiplet ${\boldsymbol{S}}$

- Gives an "extra Higgs"
- Couples only to other Higgses (before mixing): hard to detect, can be quite light
- Exotic decays $h^0 \rightarrow ss$
- Decays $s \to \overline{b}b, \ \tau\tau, \ \gamma\gamma$ made possible by mixing

Lisanti & Wacker, PRD79, 115006 (2009)

New chiral supermultiplet S also gives an extra neutralino \tilde{s} - Makes the neutralino sector more complicated: may need LHC and ILC synergy to unravel.

Moortgat-Pick et al, hep-ph/0508313

Heather Logan (Carleton U.)

SUSY phenomenology

New chiral supermultiplet S also gives an extra neutralino \tilde{s}

- Dark matter particle, can be quite light
- Invisible Higgs decay $h^0 \rightarrow \tilde{s}\tilde{s}$ if light enough

Plot: ATLAS with 30 fb⁻¹. Scaling factor $\xi^2 \sigma_{SM} \equiv \sigma \times BR(H \rightarrow invis)$

MSSM Higgs summary

MSSM Higgs sector has a rich phenomenology

One Higgs boson h^0

- Can be very similar to SM Higgs
- Mass is limited by MSSM relations, $\lesssim 135~\text{GeV}$

Set of new Higgs bosons H^0 , A^0 , and H^{\pm}

- Can be light or heavy
- Search strategy depends on mass, $\tan\beta$

Beyond the MSSM:

- Usually one more new Higgs
- Can have dramatic effect on Higgs phenomenology