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We have seen the two key features of the MSSM that impact
Higgs physics:

- There are two Higgs doublets.

- The scalar potential is constrained by the form of the super-
symmetric Lagrangian.

Let's start with a closer look at each of these.
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The MSSM requires two Higgs doublets
Reason #1: generating quark masses

The SM Higgs doublet is ® = ( (Zg ) with (¢9) = v/v/2.

Generate the down-type quark masses:
Lyuk = —yadp®TQr + h.c.
= —yadr (¢7,6%) ( ) +h.c.

_yd\/— (deL -+ deR) + interactions

—my dd + interactions

Generate the up-type quark masses:

'CYUK = —yqu_LRCDTQL—I—h.C.?

Does not work! Need to put the vev in the upper component of
the Higgs doublet.
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Can sort this out by using the conjugate doublet &:

[not to be confused with a superpartner....]

oo =i(0 3 ) (%)= ()

Lyik = —yutip®'Qr + h.c.
—yytup (60, —pt) [ UL h.c.
yuR(¢, ¢ )<dL>+

(Y
= —yu——=(upuyr +urupr) 4+ interactions
yu\@( RuL + uruR)

= —my uu <+ interactions

Works fine in the SM!

But in SUSY we can’t do this, because Ly, comes from
— AW iipap; + c.c. with W4 = MU + yiikeg, .

W must be analytic in ¢

— not allowed to use complex conjugates.
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Instead, need a second Higgs doublet with opposite hypercharge:

() we ()

Lyuk = —deRGiniQ]L yu iR €;H5Q) + h.c. OkK!
V2
= — dd — y,—=uu + interactions
yd\f 2

[lepton masses work just like down-type quarks]

Two important features:

- Both doublets contribute to the W mass, so need v —I—v2 — quM
Ratio of vevs is not constrained; define parameter tan 8 = vy /v1.

- tan 8 shows up in couplings when y,; are re-expressed in terms
of fermion masses.

\ﬁmd V2my, \ﬁmg

vgMm COS 3 Y e Sin Y= e COS 3

Yd =

Heather Logan (Carleton U.) SUSY phenomenology PHYS 6602 W11
5



The MSSM requires two Higgs doublets
Reason #2: anomaly cancellation

Chiral fermions (where the left-handed and right-
handed fermions have different couplings) can cause
chiral anomalies. anomaly diagram —

Breaks the gauge symmetry—generally very bad.

Standard Model: chiral anomalies all miraculously cancel within
one fermion generation:

pure hypercharge : > Yf3 =0
all f
hypercharge and QCD : > Y, =0
allq
hypercharge and SU(2) : > Y; =0

weak doublets
Higgs has no effect on this since it's not a chiral fermion.
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Supersymmetric models: Higgs is now part of a chiral supermul-
tiplet. Paired up with chiral fermions! (Higgsinos)

The Higgsinos contribute to the chiral anomalies.

One Higgs doublet: carries hypercharge and SU(2) quantum
numbers; gives nonzero Yf3 and Y; anomalies.

To solve this, introduce a second Higgs doublet with opposite
hypercharge: sum of anomalies cancels.

[This is exactly the same as the requirement from generating up and down quark masses.]

MSSM is the minimal supersymmetric extension of the SM.

- Minimal SUSY Higgs sector is 2 doublets.

- More complicated extensions can have larger Higgs content
(but must contain an even number of doublets).
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Higgs content of the MSSM

. _ T
Standard Model: b = ( (v + gboﬂ“ oy z’gbofi)/ﬁ )

- Goldstone bosons Gt = o1, GY = 497 “eaten” by W1 and Z.
- One physical Higgs state HY = 40,

MSSM: Hy = ( (v1 + ¢(1)’:;§ i$7")/ V2 )
1

_ 63 ) .
H- = r ) i tan g = v /v
g ( (vo + ¢ +ipa") /2

- Still have one charged and one neutral Goldston'e boson:
Gt =—cosBo7*+sinBe¢d  GO=—cosBey’ +sinB oy

- Orthogonal combinations are physical partic;les: [mixing angle g]
Ht =sinB¢;* + cosBod A0 =sin B¢ + cos B ¢"

- Two CP-even neutral physical states mix: [mixing angle a]
hO = —Sinoz(b(l)’r—l—COSOzcbg’r HOZCOSOz(b(l)’T—I—Sinoz(bQ
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What are these physical states?
Masses and mixing angles are determined by the Higgs potential.

For the most general two-Higgs-doublet model:

V = m3L o0, + m2,5d, — [m,d]d, +h.c]
+3 A (P1P1)” + FA2(DLPy)” + A3(P] 1) (PLD) + Ag(D]D,) (P5Dy )

+{325(2]®2)” + [No(P]D1) + Ar(PLP2)] 2D, + hic.}
from Haber & Davidson, PRD72, 035004 (2005)

MSSM is much more constrained, because of supersymmetry.

Supersymmetric part:
1
LD =WiW;— =3 65(¢"T"¢)?
a
recall Wi = M¥Y¢; + Lyiik¢;¢;
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The only relevant part of the superpotential is W = u H{ H».
The rest of the SUSY-obeying potential comes from the D
(gauge) terms, V D %Za g2 (p*T ).

Vsusy = |ul2H]Hy + |pl?HH,
T3 <H2H2—H1H1>
1 2
+§92 (H{o"Hy + Hio"Hp)
Note only one unknown parameter, |M|2! (g, ¢ are measured.)
But there is also SUSY breaking, which contributes three new
quadratic terms:
breaking — ™Mpg, 1+mH2 2 o+ €5 1o 117 + h.c.

Three more unknown parameters, m%l, m%b, and b.
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Combining and multiplying everything out yields the MSSM Higgs
potential, at tree level:
2 2 —2 2 0,2

Vo= (ul®+m3) (IHDP + [HT1?) + (ul® +m3,) (1HI? + |HS |?)

+ b (HF Hy — HIHYD) + h.c]

1/ 5 2 2 2 2 — 122
2 (9 +92) (1H31 + |HS P — [HDP? — [H )
1 12

+592 ’H;_H?* + H3H{ "

Dimensionful terms: (|,u|2—|—mH ), b set the mass-squared scale.
© terms come from F- terms SUSY-preserving
ml%ll _ and b terms come directly from soft SUSY breaking

Dimensionless terms: fixed by the gauge couplings g and ¢’
D-term contributions: SUSY-preserving

Three relevant unknown parameter combinations:
(Iul* +mZ), (Jul* +m7,), and b.

[All this is tree-level: it will get modified by radiative corrections.]
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T he scalar potential fixes the vacuum expectation values, mass
eigenstates, and 3— and 4—Higgs couplings.

Step 1: Find the minimum of the potential using g]‘{/_ = 0.

This lets you solve for v1 and vy in terms of the Higgs potential
parameters. Usually use these relations to eliminate (|u|2—|—m%{1)

and (|u|? + m%b) in favor of the vevs.

[Eliminate one unknown: v$ 4 v3 = v3,,.]

Step 2: Plug in the vevs and collect terms quadratic in the fields.
These are the mass terms (and generically include crossed terms like
H Hy). Write these as Mijqbz-qﬁj and diagonalize the mass-squared
matrices to find the mass eigenstates.
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Results: Higgs masses and mixing angle
[Only 2 unknowns: tan B and M4o.]

2 _ _2b 2 _ a2 2
Mo = sin23 Mire = Mo + Mgy,

M2 o = 5 (M30 + M3 F /(M3 + M2)? — 4MZM35, cos? 25)

[By convention, kP is lighter than HY]
Mixing angle for k9 and HO:

sin 2« M=o+ Mz COs 2a Mo — Mz

sin28 M2, — M2, cos28 M2, — M2

[Note M3, = g%v?/4 and Mz = (g° + ¢"?)v?/4: these come from the g2 and g2
terms in the scalar potential.]

- A9 HO and H* masses can be arbitrarily large: grow with %

- k9 mass is bounded from above: M,o < |cos28|My; < My (1)

This is already ruled out by LEP! The MSSM would be dead if
not for the large radiative corrections to M;o.
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Mass matrix for ¢3'5:

M2 — M?2sin® B + M2 cos? 3 —(M?2% + M2) sin 3 cos 3
 \ —(M3 + M32)sinScos S M3 cos? B+ MZsin® 3

Radiative corrections come mostly H -

from the top and stop loops.

New mass matrix:

7 N\
2 _ 2 AMZ, AM?Z, : :
M - Mtree —l_ < AM%]' AMQQ —--H—-—-(—\M/-}—-——H——-

Have to re-diagonalize.

Leading correction to M,o:

3 . mg, mg
AMZ, ~ ——_v?2ytsin*g In|—2. 22
RO 47‘(‘2v Yt P th
Revised bound (full 1-loop + dominant 2-loop): M;o0 < 135 GeV.
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Higgs masses as a function of M 4 [for tan 8 small (3) and large (30)]

250 T | T T T T | T T T T | T T /I T
B - .. V T
maximal mixing 30
B P 4
. = —200 GeV P |
- L Mgygy = 1 TeV P 3 4
-

200 —
§ 30 ]
m -
n
© 4
= ]
n
ap 150 ]
2 |
T I 30 ]

- ~ - - - - - T T T T T T T
- s == T T T 4
00— -7 - tan g = 3 _
- /' —~ i
i | |/ | | | | | | | | | | | | | |
100 150 <00 250 from Carena & Haber,

hep-ph /0208209
For large M 4:
- M; asymptotes
- Mo and M4 become increasingly degenerate with M4
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Higgs couplings

Higgs couplings to fermions are controlled by the Yukawa La-
grangian,

Lvuk = —YeereiiHILL —yqdreiH1Qp — yuUr € H5Q7 + h.c.
tan g-dependence shows up in couplings when y; are re-expressed
in terms of fermion masses:

\/img \/imd V2muy,
vgMm COS B vgp\ COS B vg\m Sin B

Higgs couplings to gauge bosons are controlled by the SU(2)
structure.

Plugging in the mass eigenstates gives the actual couplings.
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Couplings of P (the light Higgs)

WOWTW= ¢ igMygu sin(8 — a)
. gMyz :
hzz sin(8 —
i g sin(8 — )
hOT PRAd [sin(B — a) + cot B cos(B — a)]
2 My
nOph - I [sin(B — a) — tan B cos( — )]
2 My

[RP¢T ¢~ coupling has same form as hObb)

Controlled by tan g and the mixing angle «.

In the “decoupling limit" M 40 > My, cos(B8 — «) goes to zero:

1 M2
cos(B — a) ~ —sin4p—~&
(B —a) 5 BMjo

Then all the kP couplings approach their SM values!
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LEP searches for hY

+ — 0. : gMy : -
ete” — Z* — Zh"”: coupling COSQWgWS,ln(ﬁ o)

- Production can be suppressed compared to SM Higgs

g\] \
dl |
o LEP
= - (a) Vs = 91-209 GeV
:4: B
g |
DJ B — Observed 7
U T Expected for background
X 10 -
wn ]
(=) ]
-2
10 ol e e
20 40 60 80 100 120
2
m(GeV/c")
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LEP searches for hY

etTe™ — Z* = hOAQ: coupling « cos(8 — )
- Complementary to Zh0
- Combine searches for overall MSSM exclusion

ol
g
<
—
10
Excluded
by LEP
1 ¢ ]
Theoretically ]
[ Inaccessible \ I
PN T TN N T T T N TR SN T [N SO T | h |
0O 20 40 60 80 100 120 2140
m, (GeV/c?)
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(00)

(0]
0 O .
LHC searches for h § 6L ATLAS TCo(rI)]blned
2 y 77 — 4l
5 L=10"fb o
. . w14 .. TT
Decoupling limit 3 WWO0j — ev uv
(large M 40): o112 —- WW2j = ev uv
o
X
()] 10 +
- hY search basically the g |
same as SM Higgs search | /Lo T
6 L
. 4 r
- Mass <135 Gev: | /S
lower-mass search chan- o S T T
nels most important ol o
100 120 140 160 180 200 220

_ m,, (GeV)
- Challenging channels

SM Higgs significance, ATLAS CSC book, arXiv:0901.0512
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Couplings of HO and AC

HOWTw— ig My guv COS(B — o)

. gMz
HZZ Cos(B —
ZcosHWgW (5 —a)
HO%t A [—cot Bsin(B — a) 4+ cos(B — )]
"My
HO%p : I [tan Bsin(B — a) + cos(B — a)]
"2 My
- . 9 5 O . 9T 5
A% cot A~bb . tan
> My By > My By

Couplings to leptons have same form as bb.

Remember the decoupling limit cos(8 — «) — O:
- bb and 71 couplings go like tan 8: can be strongly enhanced.
- tt couplings go like cot 8: can be strongly suppressed.

Can't enhance #t coupling much: perturbativity limit.
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Tevatron searches for HY and A°

Use beO, bbAO couplings: enhanced at large tanpg
- bb — HO9, AQ, decays to 7+ (most sensitive) or bb

%1005 Tevatron Run Il Preliminary, L= 1.8-2.2 fb™
s 90F m,, max, 1=-200 GeV
80 z“ Excluded by LEP
[Tl = Observed limit
70 Expected limit
- Expected limit+ 1c
60 :_ Expected limit+2 ¢
50} N
40 /" "N\ \\
30 “‘{\\\\\\\ —\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\
O W)
20 £l \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
100
: 1 I 1 1 1 | 1 1 1 | 1 1 1 I | | | I 1 1 1
100 120 140 160 180 200
m, [GeV/c?]
77 channel, CDF + DZero, arXiv:1003.3363
Heather Logan (Carleton U.) SUSY phenomenology PHYS 6602 W11

22



LHC searches for H° and AY

Same idea, higher mass reach because of higher beam energy
and luminosity

bb — HO, AO — 4 channel: rare decay but great mass resolution!

1 T 1 UL T T 1 T T 1 1 T 1T 1 1 1 1 1 T 1T < 60 L L T 17 L L L L T 17
2 0P | | ATLAS 1 27 o | N
> B ) . 1 3 | 95% CL exclusion contour ATLAS -
8 -~ 5o discovery contour y 1 © gl .max . =
@ 50 _ 1 X 90 my™ - scenario ]
S | m,” - scenario 15 r /. .
© 40| 1S 40 L=10fo" -
2 4 b .
Sal C 1 o L ]
§ 30 ] § 30— -
- = Combined Analysis 1T L=30 fb~ .
20 Tgmmass® Without Systematics — 201 - = -
- . _ . ] B —_—— Combined Analysis ]
io- With Experimental Systematics 10— No Theoretical Uncertainty |
E Theoretical Uncertainty E E —— With Theoretical Uncertainty E
O L I I ‘ I N ‘ I I ' ‘ I I ' ‘ I I ' ‘ I I ' ‘ I I ' ‘ I I ' ] L I ‘ I ‘ I I ‘ I I ‘ I ‘ I I ‘ I ‘ I I ]
50 100 150 200 250 300 350 400 450 o 100 150 200 250 300 350 400 450
m, (GeV) m, (GeV)
pp channel, ATLAS CSC book, arXiv:0901.0512
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Couplings of HT

_ ) g
HYr 7 i—2 [m,tan BP
\@MW[ ~tan 5Pyl
Important for decays
_ _ g
HYTb : i+—2  V, [m;cot P + mptan P
NCIT i [me cot BPL ptan BPR]

Important for production and decays
Hteés coupling has same form

Couplings to another Higgs and a gauge boson are usual SU(2)
form.

7H+H_, ZH+H_ Search for pair production at LEP
W+H_AO, W+H_HO Associated production at LHC
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LEP searches for HT

1\ L
= |
|
0.8 —
etTe™ > ~* Z* > HTH™ i
0.6 ;
H¥ decays to 7v or cs j
- Assume no other decays i LEP 189-209 GeV
Major background from WTW— . _
especially for HT — cs ﬁ
0 T, m
60 65 70 75 80 85 90 95
Limit M4 > 78.6—89.6 GeV charged Higgs mass (GeV/c")
LEP combined, hep-ex/0107031
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Tevatron searches for HT

Look for t — HTb. Coupling Vg—]z [m; cot BP;, + mytan BPg]
- Sensitive at high and low tan .
- Decays to Tv or cs.

BR(HT — ¢3) = 1; BR(HT — 7v) > O:
Look for M;; # Myy. Look at final-state fractions.

.................... _._ Observed @ 950/0 CL- 3
— Expected @ 95% C.L. "j:
-
N
m

o
o

1 D@, L=1.0 fb™

°
(2]

[ 68% of SM @ 95% C.L.
[ ] 95% of SM @ 95% C.L.

0.8 B(H" — t* v)=1
1 —=— Expected 95% CL limit
0.6 —e— Observed 95% CL limit

©
>

o
w

\\\\i\\\\i\\\\i\\\\i\\\\i\\\\l\\

B(t — H* b) with B(H* — ¢§) = 1.0

0.4
0.2F - A KO :
0.1 ./. e ‘ 1 =———p
3 3 | | 0- — I . I T I T
05 80 00 120 140760 80 100 120 140 160
M(H") [GeV/c?] M. [GeV]
CDF, PRL103, 101803 (2009) DZero, arXiv:0908.1811
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LHC searches for HT

50 discovery sensitivity

tanp

Light charged Higgs:
top decay t — Htb with HT — 7v.

NE
B 10 tb~"]
Scenario B ATLAS Hl 117" ]

920 100 110 120 130 140 150 160 170
m,,. [GeV]

ATLAS CSC book, arXiv:0901.0512

50 discovery sensitivity

60

CDF Run I

55 Excluded
50} 95% CL
Heavy charged Higgs: ol
associated production pp — t H™. 2 )
most of sensitivity with H+ — v . Eton-
_ 15 10 b~
HT — tb contributes but large background. 10 L
5 cenario | | ‘A TLAS ]
90 110 130 150 170 22(:'_', [GeV]250 400 600
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Search for all the MSSM Higgs bosons at LHC

ATLAS, 300 fb~1, m;'?* scenario. From Haller, hep-ex/0512042
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What if only kO is accessible?

Try to distinguish it from the SM Higgs using coupling measure-
ments.

POWTW = : igMygu sin(8 — a)

0 . gMy .
h“ZZ o HWgw/ sin(8 — «)
hOT PRAd [sin(B — a) + cot B cos(B — a)]
2 My
OT . gmy : _ _ _
h-bb ZQMW [sin(8 — a) —tan B cos(B — a)]

Other couplings:

- ggh9: sensitive to hO%t coupling, top squarks in the loop.

- hO~~: sensitive to hOWTW—, hO%t, couplings, charginos and top
squarks in the loop.
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Coupling fit at the LHC:

Look for discrepancies from SM predictions

30 e
I 27301
2*300+2*100fb" -~
20 | | 2+300f0" - 1
| |
ro mp'* scenario
‘l’ l," 50
|
i‘ 10 -1’,_, .
8 | | g
7t / .
6 // B
5 L _/»‘ )
A 125 GeV
4t ]
3 o ] i ] [T IR R | ]
200 300 400 500 600 700
My (GeV)

Diihrssen et al, PRD70, 113009 (2004)
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Major motivation for ILC: probe h® couplings with much higher
precision.

50 L} L] L] L]
40 ILC //
mp & scenario /
2 /
30 F = -
Ay~ =25 /
expt+theory /
exptonly ——— /
20 F / -
R T Mp = 129 GeV /
N [ T fr
C 1000 GeV !/
i AN
10 F lab ' -
9F | -
8 F | -
7 B / -
6 » I -
R 125 GeV /
51 , e — -
4 F ( -
R S N S 120@'9V\ .............................
3 'l 'l 'l
800 1000 1200 1400
M, [GeV]
Logan & Droll, PRD76, 015001 (2007)
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Going beyond the MSSM

Simplest extension of MSSM is to add an extra Higgs particle.
- NMSSM, nMSSM, MNSSM, etc.

New chiral supermultiplet S

- Gives an “extra Higgs”
- Couples only to other Higgses (before mixing): hard to detect,

can be quite light
- Exotic decays h0 — ss
- Decays s — bb, 77, vy made possible by mixing

Br< >..<

Lisanti & Wacker, PRD79, 115006 (2009)
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New chiral supermultiplet S also gives an extra neutralino s
- Makes the neutralino sector more complicated: may need LHC
and ILC synergy to unravel.

Contradiction within MSSMh
ILC: prediction of

mo/GeV 575
550
D25
200
475
450
425

LHC: 400

measurement 375

TF oy —=
of m <

mixing character of

-0
X4

and

S50

0 0.2 0.4 0.6 0.8 1
caugino character

Moortgat-Pick et al, hep-ph/0508313
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New chiral supermultiplet S also gives an extra neutralino s
- Dark matter particle, can be quite light
- Invisible Higgs decay h® — 35 if light enough

Plot: ATLAS with 30 fb~!. Scaling factor £?ospm = 0 x BR(H — invis)

10

Comparison of the discovery potential for different channels |

=A- ZHinv

| —&— ttHinv

L d
*
*
. *
i, ®
.
*
‘O
*

.......................................

[ATL-PHYS-PUB-2006-009]
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400
M, [GeV/c?]

Z Hjny — uses
7 — 0ty

VBF looks very good,

but not clear how
well events can be
triggered.

ttH;,, — may be room
for improvement?
ATLAS study in
progress.
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MSSM Higgs summary
MSSM Higgs sector has a rich phenomenology

One Higgs boson AY
- Can be very similar to SM Higgs
- Mass is limited by MSSM relations, < 135 GeV

Set of new Higgs bosons H9, A9 and HT
- Can be light or heavy
- Search strategy depends on mass, tang

Beyond the MSSM:
- Usually one more new Higgs
- Can have dramatic effect on Higgs phenomenology
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