SUSY phenomenology

Heather Logan
Carleton University

PHYS 6602 (Winter 2011)

We have seen the two key features of the MSSM that impact Higgs physics:

- There are two Higgs doublets.
- The scalar potential is constrained by the form of the supersymmetric Lagrangian.

Let's start with a closer look at each of these.

The MSSM requires two Higgs doublets
Reason \#1: generating quark masses
The SM Higgs doublet is $\Phi=\binom{\phi^{+}}{\phi^{0}}$, with $\left\langle\phi^{0}\right\rangle=v / \sqrt{2}$.
Generate the down-type quark masses:

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }} & =-y_{d} \bar{d}_{R} \Phi^{\dagger} Q_{L}+\text { h.c. } \\
& =-y_{d} \bar{d}_{R}\left(\phi^{-}, \phi^{0 *}\right)\binom{u_{L}}{d_{L}}+\text { h.c. } \\
& =-y_{d} \frac{v}{\sqrt{2}}\left(\bar{d}_{R} d_{L}+\bar{d}_{L} d_{R}\right)+\text { interactions } \\
& =-m_{d} \bar{d} d+\text { interactions }
\end{aligned}
$$

Generate the up-type quark masses:

$$
\mathcal{L}_{\text {Yuk }}=-y_{u} \bar{u}_{R} \Phi^{\dagger} Q_{L}+\text { h.c.? }
$$

Does not work! Need to put the vev in the upper component of the Higgs doublet.

Can sort this out by using the conjugate doublet $\tilde{\Phi}$:
[not to be confused with a superpartner....]

$$
\begin{aligned}
& \tilde{\Phi} \equiv i \sigma_{2} \Phi^{*}=i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\phi^{-}}{\phi^{0 *}}=\binom{\phi^{0 *}}{-\phi^{-}} \\
& \begin{aligned}
\mathcal{L}_{\text {Yuk }} & =-y_{u} \bar{u}_{R} \widetilde{\Phi}^{\dagger} Q_{L}+\text { h.c. } \\
& =-y_{u} \bar{u}_{R}\left(\phi^{0},-\phi^{+}\right)\binom{u_{L}}{d_{L}}+\text { h.c. } \\
& =-y_{u} \frac{v}{\sqrt{2}}\left(\bar{u}_{R} u_{L}+\bar{u}_{L} u_{R}\right)+\text { interactions } \\
& =-m_{u} \bar{u} u+\text { interactions }
\end{aligned}
\end{aligned}
$$

Works fine in the SM!
But in SUSY we can't do this, because $\mathcal{L}_{\text {Yuk }}$ comes from

$$
-\frac{1}{2} W^{i j} \psi_{i} \psi_{j}+\text { c.c. with } W^{i j}=M^{i j}+y^{i j k} \phi_{k} .
$$

W must be analytic in ϕ
\longrightarrow not allowed to use complex conjugates.

Instead, need a second Higgs doublet with opposite hypercharge:

$$
\begin{gathered}
H_{1}=\binom{H_{1}^{0}}{H_{1}^{-}} \quad H_{2}=\binom{H_{2}^{+}}{H_{2}^{0}} \\
\mathcal{L}_{\text {Yuk }}=-y_{d} \bar{d}_{R} \epsilon_{i j} H_{1}^{i} Q_{L}^{j}-y_{u} \bar{u}_{R} \epsilon_{i j} H_{2}^{i} Q_{L}^{j}+\text { h.c. } \quad \text { ok! } \\
=-y_{d} \frac{v_{1}}{\sqrt{2}} \bar{d} d-y_{u} \frac{v_{2}}{\sqrt{2}} \bar{u} u+\text { interactions } \\
\text { [lepton masses work just like down-type quarks] }
\end{gathered}
$$

Two important features:

- Both doublets contribute to the W mass, so need $v_{1}^{2}+v_{2}^{2}=v_{\text {SM }}^{2}$. Ratio of vevs is not constrained; define parameter $\tan \beta \equiv v_{2} / v_{1}$.
- $\tan \beta$ shows up in couplings when y_{i} are re-expressed in terms of fermion masses.
$y_{d}=\frac{\sqrt{2} m_{d}}{v_{\mathrm{SM}} \cos \beta}$
$y_{u}=\frac{\sqrt{2} m_{u}}{v_{\mathrm{SM}} \sin \beta}$

$$
y_{\ell}=\frac{\sqrt{2} m_{\ell}}{v_{\mathrm{SM}} \cos \beta}
$$

The MSSM requires two Higgs doublets
Reason \#2: anomaly cancellation

Chiral fermions (where the left-handed and righthanded fermions have different couplings) can cause chiral anomalies.
anomaly diagram \rightarrow
Breaks the gauge symmetry-generally very bad.

Standard Model: chiral anomalies all miraculously cancel within one fermion generation:

$$
\begin{aligned}
\text { pure hypercharge : } & \sum_{\text {all } f} Y_{f}^{3}=0 \\
\text { hypercharge and QCD : } & \sum_{\text {all } q} Y_{q}=0 \\
\text { hypercharge and } \mathrm{SU}(2): & \sum_{\text {weakdoublets }} Y_{d}=0
\end{aligned}
$$

Higgs has no effect on this since it's not a chiral fermion.

Supersymmetric models: Higgs is now part of a chiral supermultiplet. Paired up with chiral fermions! (Higgsinos)

The Higgsinos contribute to the chiral anomalies.

One Higgs doublet: carries hypercharge and $S U(2)$ quantum numbers; gives nonzero Y_{f}^{3} and Y_{d} anomalies.

To solve this, introduce a second Higgs doublet with opposite hypercharge: sum of anomalies cancels.
[This is exactly the same as the requirement from generating up and down quark masses.]

MSSM is the minimal supersymmetric extension of the SM.

- Minimal SUSY Higgs sector is 2 doublets.
- More complicated extensions can have larger Higgs content (but must contain an even number of doublets).

Higgs content of the MSSM
Standard Model:

$$
\Phi=\binom{\phi^{+}}{\left(v+\phi^{0, r}+i \phi^{0, i}\right) / \sqrt{2}}
$$

- Goldstone bosons $G^{+}=\phi^{+}, G^{0}=\phi^{0, i}$ "eaten" by W^{+}and Z.
- One physical Higgs state $H^{0}=\phi^{0, r}$.

MSSM:

$$
\begin{aligned}
& H_{1}=\binom{\left(v_{1}+\phi_{1}^{0, r}+i \phi_{1}^{0, i}\right) / \sqrt{2}}{\phi_{1}^{-}} \\
& H_{2}=\binom{\phi_{2}^{+}}{\left(v_{2}+\phi_{2}^{0, r}+i \phi_{2}^{0, i}\right) / \sqrt{2}} \quad \tan \beta \equiv v_{2} / v_{1}
\end{aligned}
$$

- Still have one charged and one neutral Goldstone boson:

$$
G^{+}=-\cos \beta \phi_{1}^{-*}+\sin \beta \phi_{2}^{+} \quad G^{0}=-\cos \beta \phi_{1}^{0, i}+\sin \beta \phi_{2}^{0, i}
$$

- Orthogonal combinations are physical particles: [mixing angle β] $H^{+}=\sin \beta \phi_{1}^{-*}+\cos \beta \phi_{2}^{+} \quad A^{0}=\sin \beta \phi_{1}^{0, i}+\cos \beta \phi_{2}^{0, i}$
- Two CP-even neutral physical states mix: [mixing angle α] $h^{0}=-\sin \alpha \phi_{1}^{0, r}+\cos \alpha \phi_{2}^{0, r} \quad H^{0}=\cos \alpha \phi_{1}^{0, r}+\sin \alpha \phi_{2}^{0, r}$

What are these physical states?

Masses and mixing angles are determined by the Higgs potential.
For the most general two-Higgs-doublet model:

$$
\begin{aligned}
& \mathcal{V}=m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right] \\
&+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
&+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right\}
\end{aligned}
$$

from Haber \& Davidson, PRD72, 035004 (2005)
MSSM is much more constrained, because of supersymmetry.
Supersymmetric part:

$$
\begin{aligned}
\mathcal{L} \supset-W_{i}^{*} W_{i}-\frac{1}{2} \sum_{a} g_{a}^{2}\left(\phi^{*} T^{a} \phi\right)^{2} \\
\text { recall } W^{i}=M^{i j} \phi_{j}+\frac{1}{2} y^{i j k} \phi_{j} \phi_{k}
\end{aligned}
$$

The only relevant part of the superpotential is $W=\mu H_{1} H_{2}$. The rest of the SUSY-obeying potential comes from the D (gauge) terms, $V \supset \frac{1}{2} \sum_{a} g_{a}^{2}\left(\phi^{*} T^{a} \phi\right)^{2}$.

$$
\begin{aligned}
V_{\text {SUSY }}= & |\mu|^{2} H_{1}^{\dagger} H_{1}+|\mu|^{2} H_{2}^{\dagger} H_{2} \\
& +\frac{1}{8} g^{\prime 2}\left(H_{2}^{\dagger} H_{2}-H_{1}^{\dagger} H_{1}\right)^{2} \\
& +\frac{1}{8} g^{2}\left(H_{1}^{\dagger} \sigma^{a} H_{1}+H_{2}^{\dagger} \sigma^{a} H_{2}\right)^{2}
\end{aligned}
$$

Note only one unknown parameter, $|\mu|^{2}$!
(g, g^{\prime} are measured.)

But there is also SUSY breaking, which contributes three new quadratic terms:

$$
V_{\text {breaking }}=m_{H_{1}}^{2} H_{1}^{\dagger} H_{1}+m_{H_{2}}^{2} H_{2}^{\dagger} H_{2}+\left[b \epsilon_{i j} H_{2}^{i} H_{1}^{j}+\text { h.c. }\right]
$$

Three more unknown parameters, $m_{H_{1}}^{2}, m_{H_{2}}^{2}$, and b.

Combining and multiplying everything out yields the MSSM Higgs potential, at tree level:

$$
\begin{aligned}
V= & \left(|\mu|^{2}+m_{H_{1}}^{2}\right)\left(\left|H_{1}^{0}\right|^{2}+\left|H_{1}^{-}\right|^{2}\right)+\left(|\mu|^{2}+m_{H_{2}}^{2}\right)\left(\left|H_{2}^{0}\right|^{2}+\left|H_{2}^{+}\right|^{2}\right) \\
& +\left[b\left(H_{2}^{+} H_{1}^{-}-H_{2}^{0} H_{1}^{0}\right)+\text { h.c. }\right] \\
& +\frac{1}{8}\left(g^{2}+g^{\prime 2}\right)\left(\left|H_{2}^{0}\right|^{2}+\left|H_{2}^{+}\right|^{2}-\left|H_{1}^{0}\right|^{2}-\left|H_{1}^{-}\right|^{2}\right)^{2} \\
& +\frac{1}{2} g^{2}\left|H_{2}^{+} H_{1}^{0 *}+H_{2}^{0} H_{1}^{-*}\right|^{2}
\end{aligned}
$$

Dimensionful terms: $\left(|\mu|^{2}+m_{H_{1,2}}^{2}\right), b$ set the mass-squared scale. μ terms come from F-terins: SUSY-preserving $m_{H_{1,2}}^{2}$ and b terms come directly from soft SUSY breaking
Dimensionless terms: fixed by the gauge couplings g and g^{\prime} D-term contributions: SUSY-preserving

Three relevant unknown parameter combinations:
$\left(|\mu|^{2}+m_{H_{1}}^{2}\right),\left(|\mu|^{2}+m_{H_{2}}^{2}\right)$, and b.
[All this is tree-level: it will get modified by radiative corrections.]

The scalar potential fixes the vacuum expectation values, mass eigenstates, and 3 - and $4-$ Higgs couplings.

Step 1: Find the minimum of the potential using $\frac{\partial V}{\partial H_{i}}=0$.
This lets you solve for v_{1} and v_{2} in terms of the Higgs potential parameters. Usually use these relations to eliminate $\left(|\mu|^{2}+m_{H_{1}}^{2}\right)$ and $\left(|\mu|^{2}+m_{H_{2}}^{2}\right)$ in favor of the vevs.
[Eliminate one unknown: $v_{1}^{2}+v_{2}^{2}=v_{\mathrm{SM}}^{2}$.]
Step 2: Plug in the vevs and collect terms quadratic in the fields. These are the mass terms (and generically include crossed terms like $H_{1}^{+} H_{2}^{-}$). Write these as $M_{i j}^{2} \phi_{i} \phi_{j}$ and diagonalize the mass-squared matrices to find the mass eigenstates.

Results: Higgs masses and mixing angle
[Only 2 unknowns: $\tan \beta$ and $M_{A^{\circ}}$.]

$$
\begin{aligned}
M_{A^{0}}^{2} & =\frac{2 b}{\sin 2 \beta} \quad M_{H^{ \pm}}^{2}=M_{A^{0}}^{2}+M_{W}^{2} \\
M_{h^{0}, H^{0}}^{2} & =\frac{1}{2}\left(M_{A^{0}}^{2}+M_{Z}^{2} \mp \sqrt{\left(M_{A^{0}}^{2}+M_{Z}^{2}\right)^{2}-4 M_{Z}^{2} M_{A^{0}}^{2} \cos ^{2} 2 \beta}\right)
\end{aligned}
$$

[By convention, h^{0} is lighter than H^{0}]
Mixing angle for h^{0} and H^{0} :

$$
\frac{\sin 2 \alpha}{\sin 2 \beta}=-\frac{M_{A^{0}}^{2}+M_{Z}^{2}}{M_{H^{0}}^{2}-M_{h^{0}}^{2}} \quad \frac{\cos 2 \alpha}{\cos 2 \beta}=-\frac{M_{A^{0}}^{2}-M_{Z}^{2}}{M_{H^{0}}^{2}-M_{h^{0}}^{2}}
$$

[Note $M_{W}^{2}=g^{2} v^{2} / 4$ and $M_{Z}^{2}=\left(g^{2}+g^{\prime 2}\right) v^{2} / 4$: these come from the g^{2} and $g^{\prime 2}$ terms in the scalar potential.]

- A^{0}, H^{0} and $H^{ \pm}$masses can be arbitrarily large: grow with $\frac{2 b}{\sin 2 \beta}$.
- h^{0} mass is bounded from above: $M_{h^{0}}<|\cos 2 \beta| M_{Z} \leq M_{Z}$ (!!)

This is already ruled out by LEP! The MSSM would be dead if not for the large radiative corrections to M_{h}.

Mass matrix for $\phi_{1,2}^{0, r}$:

$$
\mathcal{M}^{2}=\left(\begin{array}{cc}
M_{A}^{2} \sin ^{2} \beta+M_{Z}^{2} \cos ^{2} \beta & -\left(M_{A}^{2}+M_{Z}^{2}\right) \sin \beta \cos \beta \\
-\left(M_{A}^{2}+M_{Z}^{2}\right) \sin \beta \cos \beta & M_{A}^{2} \cos ^{2} \beta+M_{Z}^{2} \sin ^{2} \beta
\end{array}\right)
$$

Radiative corrections come mostly from the top and stop loops.

New mass matrix:

$$
\mathcal{M}^{2}=\mathcal{M}_{\text {tree }}^{2}+\left(\begin{array}{ll}
\Delta \mathcal{M}_{11}^{2} & \Delta \mathcal{M}_{12}^{2} \\
\Delta \mathcal{M}_{21}^{2} & \Delta \mathcal{M}_{22}^{2}
\end{array}\right)
$$

Have to re-diagonalize.
Leading correction to $M_{h^{0}}$:

$$
\Delta M_{h^{0}}^{2} \simeq \frac{3}{4 \pi^{2}} v^{2} y_{t}^{4} \sin ^{4} \beta \ln \left(\frac{m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}}{m_{t}^{2}}\right)
$$

Revised bound (full 1-loop + dominant 2-loop): $M_{h 0} \lesssim 135 \mathrm{GeV}$.

Higgs masses as a function of M_{A} [for $\tan \beta$ small (3) and large (30)]

from Carena \& Haber,
hep-ph/0208209
For large M_{A} :

- M_{h} asymptotes
- $M_{H^{0}}$ and $M_{H^{+}}$become increasingly degenerate with M_{A}

Higgs couplings

Higgs couplings to fermions are controlled by the Yukawa Lagrangian,

$$
\mathcal{L}_{\text {Yuk }}=-y_{\ell} \bar{e}_{R} \epsilon_{i j} H_{1}^{i} L_{L}^{j}-y_{d} \bar{d}_{R} \epsilon_{i j} H_{1}^{i} Q_{L}^{j}-y_{u} \bar{u}_{R} \epsilon_{i j} H_{2}^{i} Q_{L}^{j}+\text { h.c. }
$$

$\tan \beta$-dependence shows up in couplings when y_{i} are re-expressed in terms of fermion masses:
$y_{\ell}=\frac{\sqrt{2} m_{\ell}}{v_{\mathrm{SM}} \cos \beta} \quad y_{d}=\frac{\sqrt{2} m_{d}}{v_{\mathrm{SM}} \cos \beta} \quad y_{u}=\frac{\sqrt{2} m_{u}}{v_{\mathrm{SM}} \sin \beta}$

Higgs couplings to gauge bosons are controlled by the SU(2) structure.

Plugging in the mass eigenstates gives the actual couplings.

Couplings of h^{0} (the light Higgs)

$$
\begin{aligned}
h^{0} W^{+} W^{-} & : i g M_{W} g_{\mu \nu} \sin (\beta-\alpha) \\
h^{0} Z Z & : i \frac{g M_{Z}}{\cos \theta_{W}} g_{\mu \nu} \sin (\beta-\alpha) \\
h^{0} \bar{t} t & : i \frac{g m_{t}}{2 M_{W}}[\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha)] \\
h^{0} \bar{b} b & : i \frac{g m_{b}}{2 M_{W}}[\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha)]
\end{aligned}
$$

[$h^{0} \ell^{+} \ell^{-}$coupling has same form as $\left.h^{0} \bar{b} b\right]$

Controlled by $\tan \beta$ and the mixing angle α.

In the "decoupling limit" $M_{A^{0}} \gg M_{Z}, \cos (\beta-\alpha)$ goes to zero:

$$
\cos (\beta-\alpha) \simeq \frac{1}{2} \sin 4 \beta \frac{M_{Z}^{2}}{M_{A^{0}}^{2}}
$$

Then all the h^{0} couplings approach their SM values!

LEP searches for h^{0}
$e^{+} e^{-} \rightarrow Z^{*} \rightarrow Z h^{0}$: coupling $\frac{i g M_{Z}}{\cos \theta_{W}} g_{\mu \nu} \sin (\beta-\alpha)$

- Production can be suppressed compared to SM Higgs

LEP searches for h^{0}
$e^{+} e^{-} \rightarrow Z^{*} \rightarrow h^{0} A^{0}$: coupling $\propto \cos (\beta-\alpha)$

- Complementary to $Z h^{0}$
- Combine searches for overall MSSM exclusion

LHC searches for h^{0}

Decoupling limit (large $M_{A^{0}}$):

- h^{0} search basically the same as SM Higgs search
- Mass $\lesssim 135$ GeV: lower-mass search channels most important
- Challenging channels

SM Higgs significance, ATLAS CSC book, arXiv:0901.0512

Couplings of H^{0} and A^{0}

$$
\begin{aligned}
H^{0} W^{+} W^{-} & : i g M_{W} g_{\mu \nu} \cos (\beta-\alpha) \\
H^{0} Z Z & : i \frac{g M_{Z}}{\cos \theta_{W}} g_{\mu \nu} \cos (\beta-\alpha) \\
H^{0} \bar{t} t & : i \frac{g m_{t}}{2 M_{W}}[-\cot \beta \sin (\beta-\alpha)+\cos (\beta-\alpha)] \\
H^{0} \bar{b} b & : i \frac{g m_{b}}{2 M_{W}}[\tan \beta \sin (\beta-\alpha)+\cos (\beta-\alpha)] \\
A^{0} \bar{t} t & : \frac{g m_{t}}{2 M_{W}} \cot \beta \gamma^{5} \quad A^{0} \bar{b} b: \frac{g m_{b}}{2 M_{W}} \tan \beta \gamma^{5}
\end{aligned}
$$

Couplings to leptons have same form as $\bar{b} b$.

Remember the decoupling limit $\cos (\beta-\alpha) \rightarrow 0$:

- $\bar{b} b$ and $\tau \tau$ couplings go like $\tan \beta$: can be strongly enhanced.
- \bar{t} couplings go like $\cot \beta$: can be strongly suppressed.

Can't enhance $\bar{t} t$ coupling much: perturbativity limit.

Tevatron searches for H^{0} and A^{0}
Use $b b H^{0}, b b A^{0}$ couplings: enhanced at large $\tan \beta$ - $b b \rightarrow H^{0}, A^{0}$, decays to $\tau \tau$ (most sensitive) or $b b$

LHC searches for H^{0} and A^{0}

Same idea, higher mass reach because of higher beam energy and luminosity
$b b \rightarrow H^{0}, A^{0} \rightarrow \mu \mu$ channel: rare decay but great mass resolution!

$\mu \mu$ channel, ATLAS CSC book, arXiv:0901.0512

Couplings of $H^{ \pm}$

$$
H^{+} \tau^{-} \bar{\nu}: i \frac{g}{\sqrt{2} M_{W}}\left[m_{\tau} \tan \beta P_{R}\right]
$$

Important for decays

$$
H^{+} \bar{t} b: i \frac{g}{\sqrt{2} M_{W}} V_{t b}\left[m_{t} \cot \beta P_{L}+m_{b} \tan \beta P_{R}\right]
$$

Important for production and decays $H^{+} \bar{c} s$ coupling has same form

Couplings to another Higgs and a gauge boson are usual SU(2) form.

$$
\begin{aligned}
& \gamma H^{+} H^{-}, Z H^{+} H^{-} \\
& W^{+} H^{-} A^{0}, W^{+} H^{-} H^{0}
\end{aligned}
$$

LEP searches for $H^{ \pm}$
$e^{+} e^{-} \rightarrow \gamma^{*}, Z^{*} \rightarrow H^{+} H^{-}$
$H^{ \pm}$decays to $\tau \nu$ or $c s$

- Assume no other decays

Major background from $W^{+} W^{-}$ especially for $\mathrm{H}^{+} \rightarrow$ cs

Limit $M_{H^{+}}>78.6-89.6 \mathrm{GeV}$

LEP combined, hep-ex/0107031

Tevatron searches for $H^{ \pm}$

Look for $t \rightarrow H^{+}$b.
Coupling $\frac{i g V_{b}}{\sqrt{2} M_{W}}\left[m_{t} \cot \beta P_{L}+m_{b} \tan \beta P_{R}\right]$

- Sensitive at high and low $\tan \beta$.
- Decays to $\tau \nu$ or $c s$.

$$
\mathrm{BR}\left(H^{+} \rightarrow c \bar{s}\right)=1
$$

Look for $M_{j j} \neq M_{W}$.

CDF, PRL103, 101803 (2009)

$$
\mathrm{BR}\left(H^{+} \rightarrow \tau \nu\right)>0
$$

Look at final-state fractions.

DZero, arXiv:0908.1811

Light charged Higgs:
top decay $t \rightarrow H^{+} b$ with $H^{+} \rightarrow \tau \nu$.

ATLAS CSC book, arXiv:0901.0512

Search for all the MSSM Higgs bosons at LHC

ATLAS, $300 \mathrm{fb}^{-1}, m_{h}^{\text {max }}$ scenario. From Haller, hep-ex/0512042

What if only h^{0} is accessible?

Try to distinguish it from the SM Higgs using coupling measurements.

$$
\begin{aligned}
h^{0} W^{+} W^{-} & : i g M_{W} g_{\mu \nu} \sin (\beta-\alpha) \\
h^{0} Z Z & : i \frac{g M_{Z}}{\cos \theta_{W}} g_{\mu \nu} \sin (\beta-\alpha) \\
h^{0} \bar{t} t & : i \frac{g m_{t}}{2 M_{W}}[\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha)] \\
h^{0} \bar{b} b & : i \frac{g m_{b}}{2 M_{W}}[\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha)]
\end{aligned}
$$

Other couplings:

- $g g h^{0}$: sensitive to $h^{0} \bar{t} t$ coupling, top squarks in the loop.
- $h^{0} \gamma \gamma$: sensitive to $h^{0} W^{+} W^{-}, h^{0} \bar{t} t$, couplings, charginos and top squarks in the loop.

Coupling fit at the LHC:

Look for discrepancies from SM predictions

Dührssen et al, PRD70, 113009 (2004)

Major motivation for ILC: probe h^{0} couplings with much higher precision.

Logan \& Droll, PRD76, 015001 (2007)

Going beyond the MSSM

Simplest extension of MSSM is to add an extra Higgs particle.

- NMSSM, nMSSM, MNSSM, etc.

New chiral supermultiplet S

- Gives an "extra Higgs"
- Couples only to other Higgses (before mixing): hard to detect, can be quite light
- Exotic decays $h^{0} \rightarrow s s$
- Decays $s \rightarrow \bar{b} b, \tau \tau, \gamma \gamma$ made possible by mixing

Lisanti \& Wacker, PRD79, 115006 (2009)

New chiral supermultiplet S also gives an extra neutralino \tilde{s} - Makes the neutralino sector more complicated: may need LHC and ILC synergy to unravel.

Moortgat-Pick et al, hep-ph/0508313

New chiral supermultiplet S also gives an extra neutralino \tilde{s}

- Dark matter particle, can be quite light
- Invisible Higgs decay $h^{0} \rightarrow \tilde{s} \tilde{s}$ if light enough

Plot: ATLAS with $30 \mathrm{fb}^{-1}$. Scaling factor $\xi^{2} \sigma_{\mathrm{SM}} \equiv \sigma \times \mathrm{BR}(H \rightarrow$ invis $)$

$Z H_{\mathrm{inv}}-$ uses $Z \rightarrow \ell^{+} \ell^{-}$

VBF looks very good, but not clear how well events can be triggered.
$t \bar{t} H_{\mathrm{inv}}$ - may be room for improvement? ATLAS study in progress.
[ATL-PHYS-PUB-2006-009]
Heather Logan (Carleton U.)

MSSM Higgs summary

MSSM Higgs sector has a rich phenomenology

One Higgs boson h^{0}

- Can be very similar to SM Higgs
- Mass is limited by MSSM relations, $\lesssim 135 \mathrm{GeV}$

Set of new Higgs bosons H^{0}, A^{0}, and $H^{ \pm}$

- Can be light or heavy
- Search strategy depends on mass, $\tan \beta$

Beyond the MSSM:

- Usually one more new Higgs
- Can have dramatic effect on Higgs phenomenology

