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Why supersymmetry?

Two threads of motivation:

- The last spacetime symmetry

- Solution to the hierarchy problem
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Supersymmetry as the last spacetime symmetry

The “super symmetry” itself is an extension of the Poincare

algebra [translations, rotations, boosts], discovered in the early

’70s. Operator Q that implements symmetry transformations:

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉

Spinors intrinsically complex → Q† must also be a symmetry

generator.

Q, Q† are fermionic operators: carry spin angular momentum 1
2.

Spacetime is involved!

{Q,Q†} = Pµ

{Q,Q} = {Q†, Q†} = 0

[Pµ, Q] = [Pµ, Q†] = 0

Q and Q† carry spinor indices – Lorentz structure is ok.
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Irreducible representations of SUSY algebra are called supermul-

tiplets—contain both bosonic and fermionic states that trans-

form into each other under the supersymmetry.

Very beautiful, linked to spacetime—it “must” be true. (well...)
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Supersymmetry and the hierarchy problem

Quick recap: the Higgs mechanism in the Standard Model.

Electroweak symmetry is broken by a single scalar Higgs doublet.

H =

(
G+

(h+ v)/
√

2 + iG0/
√

2

)

• G+ and G0 are the Goldstone bosons (eaten by W+ and Z).

• v is the SM Higgs vacuum expectation value (vev),

v = 2mW/g ' 246 GeV.

• h is the SM Higgs field, a physical particle.

Electroweak symmetry breaking comes from the Higgs potential:

V = µ2H†H + λ(H†H)2

where λ ∼ O(1)

and µ2 ∼ −O(M2
EW)
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The Hierarchy Problem

The Higgs mass-squared parameter µ2 gets quantum corrections

that depend quadratically on the high-scale cutoff of the theory.

Calculate radiative corrections

from, e.g., a top quark loop.
H

t

t

H

a)

H

T

t

H

b)

T

c)

! t ! t !T !T

T

H H!"T--------
MT

MT
×

For internal momentum p, large compared to mt and external h

momentum:

Diagram =
∫

d4p

(2π)4
(−)NcTr

[
iλt

i

p/
iλt

i

p/

]

= −Ncλ2
t

∫
d4p

(2π)4
Tr

[
1

p2

]
Tr [1] = 4

= −
4Ncλ2

t

(2π)4

∫
d4p

p2

Dimensional analysis: integral diverges like p2
max.

Heather Logan (Carleton U.) SUSY phenomenology PHYS 6602 W11

7



Momentum cutoff Λ:

Diagram ∼ −
4Ncλ2

t

(2π)4
Λ2

Full calculation gives

∆µ2 =
Ncλ2

t

16π2

[
−2Λ2 + 6m2

t ln(Λ/mt) + · · ·
]

We measure µ2 ∼ −O(M2
EW) ∼ −104 GeV2.

Nature sets µ2
0 at the cutoff scale Λ.

If Λ = MPl = 1√
8πGN

∼ 1018 GeV, then ∆µ2 ∼ −1035 GeV2!

- Not an inconsistency in the theory.

- But it is an implausibly huge top-down coincidence that µ2
0 and

∆µ2 cancel to 31 decimal places!

and not just at one loop – must cancel two-, three-, four-, ... loop contributions

Looks horrible; there “must” be a physics reason why |µ2| �M2
Pl!
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Solutions to the hierarchy problem

How low must the cutoff scale Λ be for the cancellation to be
“natural”? Want |∆µ2| ∼ 104 GeV2 −→ Λ ∼ 1 TeV!
The fine-tuning argument tells us to expect New Physics that
solves the hierarchy problem to appear around 1 TeV!

(plus or minus an order of magnitude...)

So what is the New Physics?
There are three main approaches in BSM physics:

1. Use supersymmetry
- MSSM and extensions

2. Lower the fundamental scale of gravity to ∼TeV
- Large extra dimensions
- Warped extra dimensions (Randall-Sundrum)

3. Make the Higgs composite
- Technicolor and its variants
- Warped extra dimensions reinterpreted via AdS/CFT
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Supersymmetry as a solution to the hierarchy problem

∆µ2 from a fermion loop is negative.

∆µ2 from a boson loop is positive.

2nd diagram =
∫

d4p

(2π)4
iλ

i

p2

= −
λ

(2π)4

∫
d4p

p2

If we could arrange for λ = −4Ncλ2
t exactly, then our problem

would be solved. (can get the Nc if scalar is also a color triplet.)

Have to do this for Higgs µ2 correction diagrams involving all
fermions, W and Z bosons, and the Higgs itself.

Need to impose a symmetry relating fermions to bosons.
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This is how Supersymmetry solves the hierarchy problem:

- Each SM fermion gets a boson partner (sfermion)

- Each SM boson gets a fermion partner (-ino)

The relevant couplings for the ∆µ2 cancellation are forced to be

identical by the (super-) symmetry ← this is a key point

Straightforward to show that it works at one loop.

More difficult to check the two-, three-, ... loops (but it works!).

It’s easier to understand the cancellation from a symmetry point

of view.
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Fermion masses don’t have a hierarchy problem:
e.g., fermion self-energy diagram with a gauge boson loop gives

∆mf ∼
g2

16π2
mf log

Λ2

m2
f


Notice that ∆mf ∝ mf .
This is a manifestation of chiral symmetry:
In the limit mf = 0 the system has an extra symmetry: the
left- and right-handed components of the fermion are separate
objects.

In this limit, radiative corrections cannot give mf 6= 0: fermion
mass is protected by chiral symmetry.

Scalars have no such symmetry protection (in a non-SUSY theory).
But supersymmetry relates a scalar to a partner fermion:

it links the scalar mass to the fermion mass!
(In unbroken SUSY they are degenerate.)

So the scalar mass is also protected by chiral symmetry – the Λ2

divergences all cancel and only log(Λ2/m2) divergences are left.
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References:

S.P. Martin, “A Supersymmetry Primer,” hep-ph/9709356

- Nice accessible introduction to supersymmetry algebra and the

MSSM

J. Wess and J. Bagger, “Supersymmetry and Supergravity”

- Quite formal little book on supersymmetry algebra, building

supersymmetric Lagrangians, and supersymmetry breaking

H. Baer and X. Tata, “Weak Scale Supersymmetry: From Su-

perfields to Scattering Events”

I. Aitchison, “Supersymmetry in Particle Physics”

M. Drees, R.M. Godbole and P. Roy, “Theory and Phenomenol-

ogy of Sparticles”

- Recent textbooks on supersymmetry and MSSM phemomenol-

ogy

Heather Logan (Carleton U.) SUSY phenomenology PHYS 6602 W11

13



Recap:

We’ve seen two motivations for SUSY:

- Mathematical beauty (the only possible extension of the space-

time symmetry)

- A solution of the hierarchy problem

Next we need to look at how SUSY is implemented.
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Implementing SUSY

We need at least all the observed SM particles.

The Minimal Supersymmetric Standard Model is defined by adding
the minimal set of new particles for a working supersymmetric
theory that contains the SM.

Each fermion gets a boson (scalar) partner:
eL, eR ↔ ẽL, ẽR “selectrons”

tL, tR ↔ t̃L, t̃R “top squarks” (or “stops”)

and similarly for the rest of the quarks and leptons
The number of degrees of freedom match:

chiral fermion has 2 d.o.f ↔ complex (charged) scalar has 2 d.o.f.

Each gauge boson gets a fermionic partner:
W± ↔ W̃± “winos”

Z, γ ↔ Z̃, γ̃ “zino”, “photino”

(or W0, B ↔ W̃0, B̃ “neutral wino”, “bino”)
Again the number of degrees of freedom match:

Transverse gauge boson has 2 d.o.f. (polarizations) ↔ chiral fermion
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Building a supersymmetric Lagrangian

In a supersymmetric theory, the Lagrangian must be invariant

under supersymmetry transformations.

This can be constructed (tediously):

- free chiral supermultiplet

- interactions of chiral supermultiplets (Yukawa couplings, etc)

- gauge interactions

Invariance under supersymmetry transformations turns out to be

a really strict requirement.

The upshot is that the interactions and masses of all particles

in a renormalizable, supersymmetric theory are determined just

by their gauge transformation properties and by the so-called

superpotential W .
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The superpotential: (not actually a potential in the usual sense)

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk

* M ij is a mass matrix

* yijk will turn out to be Yukawa coupling matrices

* W is gauge invariant and analytic in the φ’s

*

(
φ
ψ

)
is a chiral supermultiplet (change ∂µ to Dµ for gauge ints)

Lfree = −∂µφ∗i∂µφi − iψ†iσ̄µ∂µψi + F ∗iFi

where Fi = −W ∗i (“F-terms”), W i = δW
δφi

= M ijφj + 1
2y
ijkφjφk

Lint = −
1

2
W ijψiψj +W iFi + c.c.

where W ij = δ2W
δφiδφj

= M ij + yijkφk (will give Yukawa couplings)
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Adding in the gauge interactions gives more Lagrangian pieces:

*

(
λa

Aaµ

)
is a gauge supermultiplet, λa is a gaugino

Lgauge = −
1

4
F aµνF

aµν − iλa†σ̄µDµλa +
1

2
DaDa

where Da = −g(φ∗T aφ) (“D-terms”)

Lgauge int = −
√

2g
[
(φ∗T aψ)λa + h.c.

]
+ g(φ∗T aφ)Da

summed over all the gauge groups and chiral multiplets, with g

being the relevant gauge coupling for each group.

Notice the parts that involve only scalars: (we will use later: Higgs)

L ⊃ F ∗iFi +W iFi +W ∗i F
∗i +

1

2
DaDa + g(φ∗T aφ)Da

= −W ∗i Wi −
1

2

∑
a
g2
a(φ∗T aφ)2

recall W i = M ijφj + 1
2
yijkφjφk
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Summary of allowed Lagrangian terms:

Gauge interactions

- Higgs, squark, slepton self-interactions through −1
2
∑
a g

2
a(φ∗T aφ)2

- gaugino interactions through −
√

2g [(φ∗T aψ)λa + h.c.]

Fermion Yukawa couplings through −1
2W

ijψiψj (W ij = M ij + yijkφk)

SM Yukawas: yuūRΦ̃†Q + ydd̄RΦ†L. SUSY: no conjugate fields allowed: need

a second Higgs doublet with opposite hypercharge.

- also show up in squark and slepton interactions through W ∗i Wi

A Higgsino mass term called the µ parameter from −1
2W

ijψiψj

And some problematic fermion-fermion-sfermion Yukawa cou-

plings also from −1
2W

ijψiψj.
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“Problematic”? L ⊃ −1
2y
ijkφkψiψj

Taking φkψiψj = d̃cQL violates lepton number.

Taking φkψiψj = d̃cucdc violates baryon number.

These two couplings together allow very fast proton decay:
uu→ e+d̄ via t-channel down-type squark ⇒ p→ e+π0

Very very bad! Need to forbid at least one of these two couplings.

R-parity gets rid of them both: R = (−1)2S+3B+L

S = spin, B = baryon number, L = lepton number.

Upshot: familiar SM particles are R-parity even; SUSY partners
are R-parity odd.

Conserved R-parity → lightest R-odd particle (LSP) is stable
→ dark matter candidate!
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Why is this good?

We need a particle explanation for dark matter!

Bullet cluster MACS J0025

Pink – hot gas via x-ray emission (Chandra)

Blue – mass density as reconstructed from gravitational lensing (Hubble)
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Particle dark matter: what do we know?

- Needs to be neutral (“dark”).

- Needs to be stable (around since early universe).

- Limits on interaction cross section from direct detection searches.

- Thermal production↔ EW-strength coupling, 0.1–1 TeV mass.

Note: without thermal production, all bets are off.

- Axions: super-light particles, produced coherently in a “cold” state, search

via resonant conversion to photons in a microwave cavity.

- WimpZillas: way too heavy to produce in colliders, number density too low

to detect.

- SuperWimps: coupling extremely weak; produced in decay of some other

relic particle. Collider: search for parent particle?
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Dark matter: direct experimental evidence that we need some-

thing new. Not guaranteed to be a new weak-scale particle.

Many BSM models provide a dark matter candidate.

(Weakly-Interacting Massive Particle = WIMP)

WIMP needs to be stable → some conserved quantum number.

- Lightest particle carrying the conserved quantum number is

forced to be stable.

- SUSY: R-parity, a Z2 parity wanted for proton stability.

- Universal extra dimensions: KK-parity, also an imposed Z2

- Little Higgs with T-parity: an imposed Z2 parity motivated to

improve EWP consistency.

- Twin Higgs, inert doublet model, singlet scalar dark matter,

etc. . . all have a conserved parity and a dark matter candidate.
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Z2 parities:

Particle has quantum number +1 or −1 under the parity:
φ→ +φ (even) ψ → −ψ (odd)

A Lagrangian invariant under the Z2 can only contain terms with
even powers of odd-charged fields.
This means that interaction vertices must involve only even num-
bers of odd-charged fields.

– Starting from a Z2-even initial state, Z2-odd particles can be
produced only in pairs. [SUSY particles must be pair produced.]

– A Z2-odd particle must decay to an odd number of Z2-odd
particles plus any number of Z2 even particles.
[SUSY particles decay via a decay chain to the lightest SUSY particle (LSP), which is stable.]

– Two Z2-odd particles can annihilate into a final state involving
only Z2-even particles.
[Two LSPs in the galactic halo can annihilate to SM particles.]
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The particle content of the MSSM

Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 −1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2
ẽL ẽR ν̃e (same)

sleptons 0 −1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ
neutralinos 1/2 −1 B̃0 W̃0 H̃0

u H̃0
d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 −1 W̃± H̃+
u H̃−d C̃±1 C̃±2

gluino 1/2 −1 g̃ (same)

gravitino/
goldstino 3/2 −1 G̃ (same)

... plus the usual SM quarks, leptons, and gauge bosons.
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MSSM particle content: a few details

In the MSSM we are forced to expand to two Higgs doublets
- Structure of MSSM couplings require a second Higgs to give masses to both

up and down type fermions

- Since Higgses now have fermionic partners, anomaly cancellation requires

two Higgs doublets with opposite hypercharges

Instead of 1 Higgs boson, get 5 d.o.f.: h0, H0, A0, H±

Each Higgs boson gets a fermionic partner:
Hu = (H+

u , H
0
u)↔ (H̃+

u , H̃
0
u)

Hd = (H0
d , H

−
d )↔ (H̃0

d , H̃
−
d ) “Higgsinos”

Again the number of degrees of freedom match:

Complex scalar has 2 d.o.f. ↔ chiral fermion.

Dealing with the chiral fermions:
– Have 4 neutral chiral fermions: B̃, W̃0, H̃0

u , H̃0
d . These mix

and give four Majorana neutralinos Ñi or χ̃0
i .

– Have 4 charged chiral fermions: W̃±, H̃+
u , H̃−d . These pair up

(and mix) and give two Dirac charginos C̃i or χ̃±i .
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If supersymmetry were an exact symmetry, the SUSY particles

would have the same masses as their SM partners.

Clearly they are not: SUSY must be broken.

- Not easy to break SUSY without extra model content.

- Almost always SUSY-breaking happens in a “hidden sector”

with no SM interactions.

- SUSY-breaking must be communicated to the “visible sector”

by some “mediation” mechanism.

Most general set of SUSY-breaking Lagrangian terms introduces

more than 100 new parameters (so much for the beauty of SUSY . . .)

Specific SUSY-breaking-mediation models introduce O(5–10) new

parameters.

Most of the SUSY phenomenology is controlled by the (un-

known) SUSY-breaking parameters.
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A schematic sample SUSY spectrum:

(This may or may not have anything to do with reality)

Some features:

• Ñ1 is the LSP

• t̃1 and b̃1 are the

lightest squarks

• τ̃1 is the lightest

charged slepton

• Colored particles

are heavier than

uncolored particles

from Martin, hep-ph/9709356

(More on this coming soon.)
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Summary: So far we looked at:

- Motivations to consider supersymmetry

- How to build a supersymmetric Lagrangian

- R-parity and dark matter

- Why SUSY must be broken

Still to come:

- SUSY Higgs sectors and their phenomenology

- Superpartner spectra in various schemes of SUSY breaking, and

how to observe them

- Techniques for measuring couplings and spins and testing the

supersymmetry coupling relations

- Techniques for measuring masses!
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