Dirac neutrinos from a second Higgs doublet

Heather Logan Carleton University

Pheno 2009 Symposium University of Wisconsin, Madison, 2009 May 12

Based on work with Shain Davidson, to appear soon.

Dirac neutrinos?

Easy to make Dirac neutrinos in the SM: just add ν_{R_i} and Yukawa couplings.

$$\mathcal{L}_{Yuk} = -y_{ij}^{\ell} \bar{e}_{R_i} \Phi^{\dagger} L_{L_j} - y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}^{\dagger} L_{L_j} + \text{h.c.}$$

- + Straightforward!
- 9 elements of y_{ij}^{ν} all $\mathcal{O}(10^{-13})$, by hand.
- No signatures other than absence of $0\nu\beta\beta$.
- Why no $M\nu_R\nu_R$ Majorana mass term?
 - \rightarrow usual Type-1 seesaw with Majorana νs

Other possibilities:

New physics at EW scale could generate m_{ν_i} .

Ex: Type-2 seesaw, $y_{ij}L_i\Delta L_j + h.c.$ $\Delta = SU(2)$ triplet scalar with Y = 2 $\Delta^{++} \rightarrow \ell_i^+ \ell_j^+$ collider signatures Majorana neutrino masses $\sim y_{ij}v_\Delta$

Heather Logan (Carleton U.)

Dirac ν s from a 2nd Higgs doublet

Pheno 2009

(stolen from A. de Gouvea)

This talk:

Simple new model for Dirac ν s from a second Higgs doublet.

Somewhat similar to Gabriel & Nandi, hep-ph/0610253

New field content:

3 right-handed two-component neutrinos ν_{R_i} (EW singlets) Second scalar doublet Φ_2 , same EW charges as SM Higgs New symmetry: global U(1)

 ν_{R_i} and Φ_2 have charge +1; all SM fields uncharged $M\nu_R\nu_R$ Majorana mass term forbidden by global U(1).

Lepton Yukawa couplings: structure fixed by U(1)

$$\mathcal{L}_{Yuk} = -y_{ij}^{\ell} \bar{e}_{R_i} \Phi_1^{\dagger} L_{L_j} - y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_2^{\dagger} L_{L_j} + \text{h.c.}$$

To generate neutrino masses, break U(1) explicitly:

$$V = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$$

Heather Logan (Carleton U.) Dirac ν s from a 2nd Higgs doublet Pl

Particles and couplings

3 SM neutrinos are Dirac particles; no additional fermionic d.o.f. 4 new scalar degrees of freedom: H^{\pm} , H^{0} , A^{0}

Mixing effects: new scalars $\sim \Phi_2 + O(v_2/v_1)\Phi_1$: completely negligible

Scalar masses: SM-like Higgs: $M_h^2 = \lambda_1 v_1^2$

New states :
$$M_{H^+}^2 = m_{22}^2 + \frac{1}{2}\lambda_3 v_1^2$$
,
 $M_A^2 = M_H^2 = M_{H^+}^2 + \frac{1}{2}\lambda_4 v_1^2$

Vev of Φ_2 : $v_2 = m_{12}^2 v_1 / M_A^2$ Another seesaw: $m_{12}^2 \sim (\text{few hundred keV})^2 \longrightarrow v_2 \sim \text{eV}$ $\longrightarrow m_{\nu}$ proper size

Yukawa couplings of physical scalars:

$$\mathcal{L}_{Yuk} = \frac{m_{\nu_i}}{v_2} H^0 \bar{\nu}_i \nu_i - \frac{i m_{\nu_i}}{v_2} A^0 \bar{\nu}_i \gamma_5 \nu_i - \sqrt{2} \frac{m_{\nu_i}}{v_2} [U_{\ell i}^* H^+ \bar{\nu}_i P_L e_{\ell} + \text{h.c.}]$$

$$U_{\ell i} \text{ is the Maki-Nakagawa-Sakata-Pontecorvo matrix}$$

$$Heather \ Logan \ (Carleton \ U.) \qquad Dirac \ \nu s \ from \ a \ 2nd \ Higgs \ doublet \qquad Pheno \ 2009$$

Constraints: big bang nucleosynthesis

 ν_{R_i} thermalized in early universe via Φ_2 exchange $\rightarrow \Delta N_{\nu} = 3$? E.g., $e^+e^- \rightarrow \nu_R \bar{\nu}_R$ via t-channel H^+ But: primordial ⁴He abundance $\rightarrow \Delta N_{\nu}^{eff} < 1.44!$ Cyburt et al, Astropart. Phys. 23, 313 (2005)

Need ν_R to be colder than ν_L so they count less towards relativistic energy density.

Freeze out ν_R before quark-hadron transition: Enough extra d.o.f. to dump energy into ν_L , e^{\pm} , γ leaving ν_R colder.

$$\frac{T_{\nu_R}^{decoup}}{T_{\nu_L}^{decoup}} \gtrsim \frac{300 \text{ MeV}}{3 \text{ MeV}} \approx \left(\frac{\sigma_L}{\sigma_R}\right)^{1/3} = \left[\frac{1}{v_1^4} \frac{4v_2^4 M_{H^+}^4}{m_{\nu_i}^4 |U_{\ell i}|^4}\right]^{1/3}$$

This gives an upper bound on neutrino Yukawa couplings:

$$y_i^{
u} \equiv \sqrt{2} rac{m_{
u_i}}{v_2} \lesssim rac{1}{30} \left[rac{M_{H^+}}{100 \,\, \mathrm{GeV}}
ight] \left[rac{1/\sqrt{2}}{|U_{\ell i}|}
ight]$$

a little bigger than SM bottom guark Yukawa coupling

or $v_2 \gtrsim 2 \text{ eV}$ (scales with heaviest neutrino mass).

Heather Logan (Carleton U.) Dirac ν s from a 2nd Higgs doublet

Phenomenology: $\mu \rightarrow e\gamma$

$$H^{+} \text{ loop : } BR(\mu \to e\gamma) = \frac{\alpha_{em} v_{1}^{4}}{96\pi v_{2}^{4}} \frac{|\sum_{i} m_{\nu_{i}}^{2} U_{ei} U_{\mu i}^{*}|^{2}}{M_{H^{+}}^{4}}.$$

Unitarity of $U_{\ell i}$: $\sum_{i} m_{\nu_{i}}^{2} U_{ei} U_{\mu i}^{*} = -\Delta m_{21}^{2} U_{e1} U_{\mu 1}^{*} + \Delta m_{32}^{2} U_{e3} U_{\mu 3}^{*}$

Goes like $v_2^{-4}M_{H^+}^{-4}$; plot for $v_2 \sim BBN$ limit

- Doesn't depend on lightest neutrino mass, only differences

- Same range covered for normal hierarchy and inverted hierarchy

MEG expt target from data-taking to end of 2011

Numerics: $2\sigma \nu$ parameter ranges from Fogli et al, Prog. Part. Nucl. Phys. 57, 742 (2006).

Heather Logan (Carleton U.) Dirac ν s from a 2nd Higgs doublet

Phenomenology: decays of new scalars

Fermionic modes: $H^+ \rightarrow \ell^+ \nu$, $A^0/H^0 \rightarrow \nu \overline{\nu}$ (via y_i^{ν}) Bosonic modes: $A^0/H^0 \rightarrow W^+H^-$ or $H^+ \rightarrow W^+A^0/H^0$ (gauge int) depends on masses: $M_A^2 = M_H^2 = M_{H^+}^2 + \lambda_4 v_1^2/2$

Most interesting decays: $H^+ \rightarrow \ell^+ \nu$.

Assume $M_{A,H} > M_{H^+}$: no $H^+ \to W^+ H^0 / A^0$.

$$\Gamma\left(H^{+} \to \ell^{+}\nu\right) = \frac{M_{H^{+}}}{8\pi v_{2}^{2}} \sum_{i} m_{\nu_{i}}^{2} |U_{\ell i}|^{2}$$

Depends on "expectation value" of m_{ν}^2 in *flavor* eigenstate ν_{ℓ} .

$$\mathsf{BR}(H^+ \to \ell^+ \nu) = \frac{\sum_i m_{\nu_i}^2 |U_{\ell i}|^2}{\sum_{\ell} \left[\sum_i m_{\nu_i}^2 |U_{\ell i}|^2\right]}$$

Identical to Δ^+ decay BRs in Type-2 seesaw model.

Heather Logan (Carleton U.) Dirac ν s from a 2nd Higgs doublet

Behavior controlled by $\theta_{23} \sim 45^{\circ}$, U_{e3} small.

Normal hierarchy: eigenstate 3 contains half of ν_{μ} , half of ν_{τ} , very little ν_e

 $\rightarrow \mathsf{BR}(\mu\nu) \simeq \mathsf{BR}(\tau\nu) \simeq 1/2, \ \mathsf{BR}(e\nu) \ll 1$

Inverted hierarchy: eigenstates 1 & 2 contain all of ν_e , half of ν_μ , half of ν_τ

 $\rightarrow \mathsf{BR}(e\nu) \simeq 1/2$, $\mathsf{BR}(\mu\nu) \simeq \mathsf{BR}(\tau\nu) \simeq 1/4$

Degenerate spectrum

 \rightarrow all three BRs = 1/3.

Heather Logan (Carleton U.) Dirac ν s from a 2nd Higgs doublet Pheno 2009

Constraints: LEP limit on H^+H^-

 $BR(H^+ \rightarrow \tau \nu)$ too small for usual LEP charged Higgs search. Look at LEP slepton searches instead with massless "neutralino".

Heather Logan (Carleton U.)

Dirac us from a 2nd Higgs doublet

Heather Logan (Carleton U.) Dirac ν s from a 2nd Higgs doublet

Phenomenology: LHC prospects

Rely on pair production: $pp \rightarrow H^+H^-$, $H^\pm A^0/H^0$, A^0H^0

- No coups to quarks; $H^+\ell_L^u_R$ coupling $\lesssim 1/30$ (BBN constraint)
- Single production $\sim g^2 v_2$: super tiny

Heather Logan (Carleton U.)

Summary

We introduce a simple new model to generate Dirac neutrino masses from couplings to a 2nd Higgs doublet with vev $v_2 \sim eV$.

Dirac neutrinos: no neutrinoless double beta decay. (sorry EXO ppl)

Constraints from BBN ($v_2 \gtrsim 2$ eV) and LEP slepton searches ($M_{H^+} \gtrsim 65-83$ GeV).

 $\mu \rightarrow e\gamma$ signal at MEG if $\sin \theta_{13} \gtrsim 0.01$ and $v_2 \lesssim 6$ eV.

Decay BRs of H^+ reflect m_{ν_i} spectrum and PMNS matrix; BR to $\mu\nu$ or $e\nu$ always $\geq 1/3$. (Same as in Type-2 seesaw.)

Currently studying LHC signal & background in $pp \rightarrow H^+H^- \rightarrow \mu^+\mu^-p_T^{miss}$ channel. (LHC xsec ~2.5x bigger than Type-2 seesaw.)

Heather Logan (Carleton U.) Dirac ν s from a 2nd Higgs doublet Pheno 2009