Neutrinos and extended Higgs sectors

Heather Logan (Carleton University)

Workshop on TeV-scale Physics and Neutrino Masses TRIUMF, October 2007

Outline

Triplet model for neutrino mass

Triplet from Littlest Higgs model

- Neutrino mass from triplet versus dimension-5 operator
- Phenomenology

Constraints on triplet models – the ρ parameter

Custodial SU(2) and the Georgi-Machacek model

Renormalization of triplet models

Summary

Triplet-Higgs model for neutrino mass

Consider a complex $SU(2)_L$ -triplet scalar with hypercharge 2:

$$Q = T^3 + Y/2$$

$$\phi = \begin{pmatrix} \phi^{++} & \phi^{+}/\sqrt{2} \\ \phi^{+}/\sqrt{2} & \phi^{0} \end{pmatrix}$$

There is only one gauge-invariant dimension-four coupling of ϕ to fermions:

$$\mathcal{L} = Y_{ij}L_i^T \phi C^{-1}L_j + \text{h.c.}$$

= $Y_{ij} \left(\ell_L^T, \nu_L^T \right)_i \begin{pmatrix} \phi^{++} & \phi^{+}/\sqrt{2} \\ \phi^{+}/\sqrt{2} & \phi^0 \end{pmatrix} \begin{pmatrix} C^{-1}\ell_L \\ C^{-1}\nu_L \end{pmatrix}_j + \text{h.c.}$

This coupling violates lepton number!

Giving ϕ a vev, $\langle \phi^0 \rangle = v'$, generates Majorana neutrino masses:

$$\mathcal{M}_{ij} = Y_{ij}v'$$

Neutrino masses are experimentally $\sim O(0.1 \text{ eV})$: $Y_{ij}v'$ must be very small, $\sim 10^{-10}$ GeV.

Heather Logan Neutrinos and extended Higgs sectors

Feynman rules for $\Delta L = 2$ couplings (all particles outgoing):

[Han, H.L., Mukhopadhyaya & Srikanth, hep-ph/0505260]

- ϕ^s , ϕ^p are the real scalar and pseudoscalar components of ϕ^0 .
- C is the charge-conjugation operator.

- If we ignore CP-violating phases then Y_{ij} is symmetric: we've combined the symmetric vertices involving ϕ^{--} , ϕ^s and ϕ^p and written them only for $i \leq j$.

- Flavour structure of leptonic decays is related to Majorana neutrino mass matrix.

This is completely generic.

Heather LoganNeutrinos and extended Higgs sectorsTRIUMF, Oct. 2007

Framework: Little Higgs models

Little Higgs models stabilize the weak scale against one-loop radiative corrections, thereby pushing the cutoff to \sim 10 TeV while maintaining a naturally light Higgs boson.

New particles at \sim 1 TeV cancel off the 1-loop SM quadratic divergence of the Higgs mass.

EW precision constraints \leftrightarrow more complicated model-building. Here we're only interested in the triplet Higgs.

Heather Logan Neutrinos and extended Higgs sectors TRIUMF, Oct. 2007

Little Higgs models with triplets:

- Littlest Higgs: 1 complex triplet
- Littlest Higgs with custodial symmetry [Chang]:
 1 complex triplet + 1 real triplet
- Minimal Moose: 1 light complex triplet
- Minimal Moose with custodial symmetry [Chang & Wacker]:
 1 real triplet
- Moose with T-parity [Cheng & Low]: 3 real triplets

Here I'll focus on Littlest Higgs. Some comments later on models with custodial symmetry.

Littlest Higgs model

[Arkani-Hamed, Cohen, Katz, Nelson, JHEP 0207, 034 (2002)]

The Littlest Higgs model is a nonlinear sigma model broken by a condensate $f \sim \text{TeV}$.

Global symmetry: $SU(5) \longrightarrow SO(5)$

Nonlinear sigma model field Σ (5×5) contains H and a triplet ϕ . H and ϕ are Nambu-Goldstone bosons of the global symmetry breaking.

<u>Gauge symmetry:</u> $[SU(2)]^2 \times [U(1)]^2 \longrightarrow SU(2)_L \times U(1)_Y$ Embedded in the SU(5) global symmetry \longrightarrow Explicitly breaks global symmetry; makes H and ϕ pseudo-Nambu-Goldstone bosons.

<u>Yukawa interactions</u>: Extra SU(2)-singlet vector-like pair of quarks T, \bar{T} added to top sector.

 \longrightarrow Explicitly breaks global symmetry; makes H a pseudo-Nambu-Goldstone boson.

Pseudo-Goldstone bosons and gauge structure Nonlinear sigma model:

$$\Sigma = e^{2i\Pi/f} \Sigma_0 = \Sigma_0 + \frac{2i}{f} \begin{pmatrix} i\phi^{\dagger} & h^{\dagger}/\sqrt{2} \\ h^*/\sqrt{2} & h/\sqrt{2} \\ & h^T/\sqrt{2} & -i\phi \end{pmatrix} + \cdots$$

Gauged $[SU(2) \times U(1)]^2$ subgroup:

$$Q_1^a = \begin{pmatrix} \sigma^a/2 & & \\ & & \end{pmatrix} \qquad Q_2^a = \begin{pmatrix} & & \\ & & -\sigma^a/2 \end{pmatrix}$$

 $Y_1 = diag(-3, -3, 2, 2, 2)/10$ $Y_2 = diag(-2, -2, -2, 3, 3)/10$

Gauge generators each preserve part of the global symmetry:

$$SU(3)_{1} \rightarrow \begin{pmatrix} 0_{2 \times 2} \\ V_{3} \\ V_{3} \end{pmatrix} \qquad SU(3)_{2} \rightarrow \begin{pmatrix} V_{3} \\ 0_{2 \times 2} \\ 0_{2 \times 2} \end{pmatrix}$$

These symmetries keep H light, but ϕ gets a mass $\sim f \sim \text{TeV}$.

Neutrinos and extended Higgs sectors

New particle content at the TeV scale:

 Z_H , $W_H^{\pm} - SU(2)$ triplet of gauge bosons from the breaking $[SU(2)]^2 \rightarrow SU(2)_L$. Cancels the Higgs mass divergence from W^{\pm} , W^3 .

T – vectorlike charge-2/3 quark. Cancels the Higgs mass divergence from the top quark.

 $\Phi^{0,+,++}$ – SU(2) triplet of scalars. Cancels the Higgs mass divergence from the Higgs self-interaction.

 $A_H - U(1)$ gauge boson from the breaking $[U(1)]^2 \rightarrow U(1)_Y$. Cancels the Higgs mass divergence from B^Y . [EW precision favors only one $U(1) \rightarrow$ no A_H particle]

Model parameters:

f – new physics scale ~ TeV $g_1/g_2 - SU(2)_{1,2}$ gauge boson coupling ratio $[Z_H, W_H^{\pm}]$ λ_1/λ_2 – top sector parameter [T] v' – triplet Φ vev $g'_1/g'_2 - U(1)_{1,2}$ gauge boson coupling ratio [EW precision favours variant with only one U(1)]

9

Scalar potential

The Littlest Higgs model contains a doublet h and a triplet ϕ :

$$h = (h^+, h^0), \qquad \phi = \begin{pmatrix} \phi^{++} & \phi^+/\sqrt{2} \\ \phi^+/\sqrt{2} & \phi^0 \end{pmatrix}$$

Most general gauge-invariant renormalizable Higgs potential is:

$$V = \lambda_{\phi^2} f^2 \operatorname{Tr}(\phi^{\dagger} \phi) - \lambda_{h\phi h} f(h\phi^{\dagger} h^T + h^* \phi h^{\dagger}) - \mu^2 h h^{\dagger} + \lambda_{h^4} (hh^{\dagger})^2 + \lambda_{h\phi\phi h} h\phi^{\dagger} \phi h^{\dagger} + \lambda_{h^2\phi^2} h h^{\dagger} \operatorname{Tr}(\phi^{\dagger} \phi) + \lambda_{\phi^2\phi^2} [\operatorname{Tr}(\phi^{\dagger} \phi)]^2 + \lambda_{\phi^4} \operatorname{Tr}(\phi^{\dagger} \phi \phi^{\dagger} \phi).$$

Little Higgs framework: take $\mu^2 \sim f^2/16\pi^2$. Minimizing the potential gives vevs, $\langle h^0 \rangle = v/\sqrt{2}$ and $\langle \phi^0 \rangle = v'$:

$$v^2 = \frac{\mu^2}{\lambda_{h^4} - \lambda_{h\phi h}^2/\lambda_{\phi^2}}, \qquad \qquad v' = \frac{\lambda_{h\phi h}v^2}{2\lambda_{\phi^2}f}.$$

- Neglected subleading contributions from $h^2\phi^2$, ϕ^4 terms.
- Notice $v' \sim v^2/f$ and is induced by the $h\phi h$ term.

Neutrinos and extended Higgs sectors

Scalar mass eigenstates

Scalar mass eigenstates are mixtures of h and ϕ . Mass hierarchy leads to small mixing, $\sim O(v/f)$.

To leading order in v/f, $(\phi^{++} \text{ does not mix})$

$$\Phi^{p} = c_{p}\sqrt{2}\operatorname{Im}\phi^{0} - s_{p}\sqrt{2}\operatorname{Im}h^{0},$$

$$\Phi^{+} = c_{+}\phi^{+} - s_{+}h^{+},$$

$$\Phi^{s} = c_{0}\sqrt{2}\operatorname{Re}\phi^{0} - s_{0}\sqrt{2}\operatorname{Re}h^{0}$$

where $s_p = 2\sqrt{2}v'/v$, $s_+ = 2v'/v$ (fixed by Goldstone boson) and $s_0 \simeq 2\sqrt{2}v'/v$ (leading contrib from potential). Small mixing with doublet yields couplings to ordinary fermions.

Masses to leading order in v/f are

$$\begin{split} M_{\Phi}^2 &\simeq \lambda_{\phi^2} f^2 \qquad \text{(degenerate)} \\ m_H^2 &\simeq 2(\lambda_{h^4} - \lambda_{h\phi h}^2/\lambda_{\phi}^2)v^2 = 2\mu^2 \end{split}$$

Heather Logan

Neutrinos and extended Higgs sectors

Littlest Higgs model: potential for h and ϕ is generated radiatively (Coleman-Weinberg potential).

Model structure leads to $\lambda_{h^4} = \lambda_{\phi^2}/4$.

Gives a relation between parameters:

$$M_{\Phi}^2 = \frac{2m_H^2 f^2}{v^2} \frac{1}{[1 - (4v' f/v^2)^2]}$$

Must have $M_{\Phi}^2 > 0$:

$$\frac{v'^2}{v^2} < \frac{v^2}{16f^2}.$$

 $M_{\Phi} \gtrsim \sqrt{2} f m_H / v$

Neutrino masses from triplet in Littlest Higgs model

$$\mathcal{M}_{ij} = Y_{ij}v'$$

Neutrino masses are experimentally $\sim O(0.1 \text{ eV})$: $Y_{ij}v'$ must be very small, $\sim 10^{-10}$ GeV.

Two possibilities:

(1) $v' \sim v^2/f \sim 1$ GeV and $Y_{ij} \sim 10^{-10}$ Physics behind small neutrino masses is in Y_{ij}

(2) $Y_{ij} \sim 1$ and $v' \sim 10^{-10}$ GeV

Physics behind small neutrino masses is in Coleman-Weinberg potential.

Technically natural: $\lambda_{h\phi h} = 0$ preserves lepton number.

or (3) somewhere in between.

Other sources of neutrino mass?

Low cutoff $\Lambda \sim 10$ TeV in Little Higgs models: dimension-5 operator might be significant.

$$\mathcal{L}_5 = Y_5 \frac{(hL)^2}{\Lambda}$$

Unless Y_5 is tiny, neutrino masses will be way too large.

To avoid this, have to postulate that there is no additional lepton-number violating physics at scale Λ , aside from our $L\phi L$ coupling.

Have to also avoid ops induced by Coleman-Weinberg potential:

(a) and (b) suppressed by [loop factor] $\times v^2/f^2$ relative to $Y_{ij}v'$

(c) suppressed by [loop factor] relative to $Y_{ij}v'$

Heather Logan Neutrinos and extended Higgs sectors TRIUMF, Oct. 2007

Phenomenology: triplet decays to leptons

Proceeds through LNV coupling.

$$\Gamma(\phi^{++} \to \ell_{i}^{+} \ell_{j}^{+}) = \begin{cases} \frac{|Y_{ii}|^{2} m_{\phi}}{8\pi}, & (i=j) \\ \frac{|Y_{ij}|^{2} m_{\phi}}{4\pi}, & (i

$$\Gamma(\phi^{+} \to \ell_{i}^{+} \bar{\nu}_{j}) = \frac{|Y_{ij}|^{2} m_{\phi}}{8\pi}, \\
\Gamma(\phi^{s} \to \nu_{i} \nu_{j} + \bar{\nu}_{i} \bar{\nu}_{j}) = \begin{cases} \frac{|Y_{ii}|^{2} m_{\phi}}{8\pi}, & (i=j) \\ \frac{|Y_{ij}|^{2} m_{\phi}}{4\pi}, & (i

$$\Gamma(\phi^{p} \to \nu_{i} \nu_{j} + \bar{\nu}_{i} \bar{\nu}_{j}) = \begin{cases} \frac{|Y_{ii}|^{2} m_{\phi}}{8\pi}, & (i=j) \\ \frac{|Y_{ij}|^{2} m_{\phi}}{4\pi}, & (i$$$$$$

All of order $(m_{\nu}/v')^2 m_{\phi}$.

Heather Logan

Neutrinos and extended Higgs sectors

Phenomenology: triplet decays to gauge and Higgs bosons

Decays to Higgs, longitudinal gauge bosons (Goldstones):

$$\begin{split} \Gamma(\phi^{++} \to W_L^+ W_L^+) &\approx \frac{v'^2 m_{\phi}^3}{2\pi v^4}, \\ \Gamma(\phi^+ \to W_L^+ Z_L) &\approx \Gamma(\phi^+ \to W_L^+ h) \approx \frac{v'^2 m_{\phi}^3}{4\pi v^4}, \\ \Gamma(\phi^s \to Z_L Z_L) &\approx \Gamma(\phi^s \to hh) \approx \frac{v'^2 m_{\phi}^3}{4\pi v^4} \\ \Gamma(\phi^p \to Z_L h) &\approx \frac{v'^2 m_{\phi}^3}{2\pi v^4} \end{split}$$

Coupling is via $h\phi h$ term:

$$\Gamma(V_L V_L, hh, V_L h) = \frac{v'^2 m_{\phi}^3}{2\pi v^4} = (\lambda_{h\phi h} f)^2 \frac{m_{\phi}}{8\pi}.$$

Heather Logan

Neutrinos and extended Higgs sectors

Phenomenology: triplet decays to transverse gauge bosons

Decays to transverse gauge bosons are through g^2v' vertex:

$$\Gamma(\phi^{++} \to W_T^+ W_T^+) \approx \frac{g^4 v'^2}{4\pi m_{\phi}},$$

$$\Gamma(\phi^+ \to W_T^+ Z_T) \approx \frac{g^4 v'^2}{8\pi m_{\phi} c_W^2},$$

$$\Gamma(\phi^s \to Z_T Z_T) \approx \frac{g^4 v'^2}{8\pi m_{\phi} c_W^4},$$

- Smaller by $g^4 v^4/m_\phi^4$ than transverse modes.

- Same dependence on $v^{\prime 2}$.

Phenomenology: triplet decays to heavy quarks

 ϕ couples to 3rd-generation quarks through mixing with h: $\sim v'/v$, tiny when $v' \ll 1$ GeV. However: structure of nonlinear sigma model leads to direct higher-dim coupling of ϕ to fermions!

$$\mathcal{L}_{\mathsf{Yuk}} = \frac{\lambda_1 f}{2} \epsilon_{ijk} \epsilon_{xy} \chi_i \Sigma_{jx} \Sigma_{ky} t^c + \lambda_2 f \overline{T} \overline{t}'^c \quad \text{with } \chi = (b, t, T),$$

$$\Sigma = e^{2i\Pi/f} \begin{pmatrix} 1 \\ 1 \\ 1_{2\times 2} \end{pmatrix} \quad \text{and} \quad \Pi = \begin{pmatrix} 0_{2\times 2} & h^{\dagger}/\sqrt{2} & i\phi^{\dagger} \\ h^*/\sqrt{2} & 0 & h/\sqrt{2} \\ -i\phi & h^T/\sqrt{2} & 0_{2\times 2} \end{pmatrix}$$

Expansion generates higher-dim terms like $h^T + \phi h^{\dagger}/f + \cdots$

Inserting h vev generates $\phi \overline{f} f$ couplings $\sim y_f v/f$. Not suppressed by v'!

Couplings generated through $h-\phi$ mixing would be $\sim y_f v'/v$.

Heather Logan Neutrinos and extended Higgs sectors TRIUMF, Oct. 2007

$$\Gamma(\phi^+ \to t\bar{b}) \approx \frac{N_c m_t^2 m_\phi}{32\pi f^2},$$

$$\Gamma(\phi^{s,p} \to t\bar{t}) \approx \frac{N_c m_t^2 m_\phi}{16\pi f^2},$$

$$\Gamma(\phi^{s,p} \to b\bar{b}) \approx \frac{N_c m_b^2 m_\phi}{16\pi f^2}$$

Partial widths $\sim (m_t^2/v^2)(v^2/f^2)m_{\phi}$. Not suppressed by v'!

Unique feature of little Higgs models: not present in general triplet neutrino mass model.

Littlest Higgs model: ϕ can also decay to heavy top-partner T:

$$\Gamma(\phi^+ \to T\bar{b}) \approx \frac{N_c m_t^2 m_\phi}{32\pi f^2} \left(\frac{\lambda_1}{\lambda_2}\right)^2 \left[1 - \left(\frac{m_T}{m_\phi}\right)^2\right]^2$$

$$\Gamma(\phi^{s,p} \to T\bar{t} + t\bar{T}) \approx \frac{N_c m_t^2 m_\phi}{16\pi f^2} \left(\frac{\lambda_1}{\lambda_2}\right)^2 \left[1 - \left(\frac{m_T}{m_\phi}\right)^2\right]^2$$

Heather Logan

Γ

Neutrinos and extended Higgs sectors

Phenomenology: triplet branching fractions: ϕ^{++}

[Han, H.L., Mukhopadhyaya & Srikanth, hep-ph/0505260]

$$\Gamma(\ell_i^+ \ell_j^+) = \begin{cases} \frac{|Y_{ii}|^2 m_{\phi}}{8\pi}, & (i=j) \\ \frac{|Y_{ii}|^2 m_{\phi}}{4\pi}, & (i$$

Crossover for $v' \sim \text{few } 10^{-5} \text{ GeV} (Y \sim \text{few } 10^{-6}).$

Note relative m_{ϕ}^2 growth of $W_L^+ W_L^+$ vs $\ell^+ \ell^+$: longitudinal pol'n vector ~ $(E_W/m_W)^2$ enhancement.

Heather Logan Neutrinos and extended Higgs sectors TRIUMF. Oct. 2007

Phenomenology: triplet branching fractions: ϕ^+

[Han, H.L., Mukhopadhyaya & Srikanth, hep-ph/0505260] Crossover to $t\bar{b}$ decays for $v' \sim 10^{-9}$ GeV ($Y \sim 0.1$).

Due entirely to nonlinear sigma model expansion!

WZ mode remains insignificant.

Phenomenology: triplet branching fractions: ϕ^s

[Han, H.L., Mukhopadhyaya & Srikanth, hep-ph/0505260]

Again crossover to $t\bar{t}$ decays for $v' \sim 10^{-9}$ GeV ($Y \sim 0.1$). Due entirely to nonlinear sigma model expansion!

ZZ, hh modes remain insignificant.

 ϕ^p decays are the same.

Phenomenology: production of triplet states

Single-production from couplings to gauge bosons:

- $\mathcal{L} = |\mathcal{D}_{\mu}\phi|^2$ gives ϕVV couplings $\sim gv'$.
- On the edge of observability at LHC when $v' \sim 1$ GeV.

- When LNV decays are relevant, $v' \ll {\rm GeV}$ and ϕVV is extremely tiny.

Pair production from couplings to gauge bosons:

- $\mathcal{L} = |\mathcal{D}_{\mu}\Phi|^2$ gives $\phi\phi VV$ couplings $\sim g^2$.
- Unsuppressed couplings!
- Pair production kinematically suppressed for heavy ϕ .

Single-production from LNV coupling to leptons:

- $e^-e^- \rightarrow \phi^{--}$, s-channel production in e^-e^- mode of ILC.

- Coupling $\sim Y_{ee}$.

Focus on pair production of $\phi^{++}\phi^{--}$ at LHC.

Decay modes: - $\ell_i^+ \ell_j^+$ and $W^+ W^+$: interplay of Y_{ij} and v'. - $\phi^+ W^+$, $\phi^+ \phi^+$: depend on ϕ mass splittings. Study ignored these – mass splittings due to EWSB typically $\sim m_W^2/m_{\phi}$.

[Han, Mukhopadhyaya, Si, & Wang, arXiv:0706.0441]

... maybe detectable with enough boost, but ϕ is not long-lived.

Event numbers after cuts: (

(LHC, 300 fb⁻¹)

[Han, Mukhopadhyaya, Si, & Wang, arXiv:0706.0441]

- Nearly background-free: mainly a question of statistics.
- Reach in $\ell^+\ell^+$ channel up to 1000 GeV for BR > 0.6.
- Reach in one channel or the other up to \sim 600 GeV.

Flavour structure of decays reflects \mathcal{M}_{ij} !

Heather Logan Neutrinos and extended Higgs sectors

Electroweak precision constraints on triplet models

SM has an accidental "custodial" SU(2) symmetry that keeps $ho\equiv rac{m_W^2}{m_Z^2 c_W^2}=$ 1 at tree level.

SM Higgs:
$$h = \begin{pmatrix} h^{0*} & h^+ \\ -h^{+*} & h^0 \end{pmatrix}$$
 with $\langle h \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}$

Higgs potential and kinetic terms are invariant under SU(2) rotations on either left or right side: $SU(2)_L \times SU(2)_R$.

Higgs vev breaks $SU(2)_L \times SU(2)_R$ down to the diagonal SU(2) subgroup: this is the custodial SU(2).

 $SU(2)_L$ is gauged; $SU(2)_R$ is a global symmetry.

Triplet vev violates custodial SU(2): $\rho \neq 1$ at tree level! Tight constraints on triplet models from ρ parameter.

[One-loop: coming in a few slides.]

Easy to work out general case:

- Need at least one doublet to give mass to quarks.

- Add a Y = 2 complex triplet or Y = 0 real triplet:

$$Y = 2: \quad \phi = \begin{pmatrix} \phi^{++} \\ \phi^{+} \\ \phi^{0} \end{pmatrix} \qquad \qquad Y = 0: \quad \xi = \begin{pmatrix} \xi^{+} \\ \xi^{0} \\ \xi^{-} \end{pmatrix}$$

Vacuum expectation values: $\langle \phi^0 \rangle = v'$, $\langle \xi^0 \rangle = v_0$.

Complex triplet with vev v' plus doublet with vev $v_d \sim 246$ GeV:

$$m_W^2 = \frac{g^2}{4} (v_d^2 + 4v'^2), \qquad m_Z^2 = \frac{g^2}{4c_W^2} (v_d^2 + 8v'^2)$$

so
$$\rho = \frac{v_d^2 + 4v'^2}{v_d^2 + 8v'^2} \simeq 1 - \frac{4v'^2}{v_d^2}$$

Real triplet with vev v_0 plus doublet with vev $v_d \sim 246$ GeV:

$$m_W^2 = \frac{g^2}{4} (v_d^2 + 4v_0^2), \qquad m_Z^2 = \frac{g^2}{4c_W^2} v_d^2$$

so
$$\rho = \frac{v_d^2 + 4v_0^2}{v_d^2} = 1 + \frac{4v_0^2}{v_d^2}$$

Rho parameter constraint forces $v', v_0 \lesssim$ few GeV.

Not a concern for our tiny ϕ vev! Single production via $VV\phi$ can never be very strong.

Heather Logan Neutrinos and extended Higgs sectors TRIUMF, Oct. 2007

There is a way around this ρ parameter constraint.

Consider a model with one doublet, one Y = 2 complex triplet, and one Y = 0 real triplet.

$$\rho = \frac{v_d^2 + 4v'^2 + 4v_0^2}{v_d^2 + 8v'^2} = 1 \quad \text{if} \quad v' = v_0.$$

Cancellation between ρ parameter shifts from complex and real triplet. Now triplet vevs can be large!

This is the Georgi-Machacek model.

Higgs sector combines one complex triplet and one real triplet into a multiplet of $SU(2)_L \times SU(2)_R$:

$$\chi = \begin{pmatrix} \phi^{0*} & \xi^+ & \phi^{++} \\ -\phi^{+*} & \xi^0 & \phi^+ \\ \phi^{++*} & \xi^- & \phi^0 \end{pmatrix}, \qquad \langle \chi \rangle = \begin{pmatrix} v' & 0 & 0 \\ 0 & v' & 0 \\ 0 & 0 & v' \end{pmatrix}$$

so that $v_0 = v'$.

 $SU(2)_L$ is gauged; $SU(2)_R$ is a global symmetry. Higgs potential constructed to be symmetric under $SU(2)_L \times SU(2)_R$. [Chanowitz & Golden] v' breaks $SU(2)_L \times SU(2)_R$ down to the diagonal SU(2) subgroup: this is the (global) custodial SU(2).

Model preserves $\rho = 1$ at tree level and v' is not constrained!

Physical states:

- SU(2)_c 5-plet: consists entirely of triplets ϕ and ξ . No couplings to fermions. Couples to gauge boson pairs $\sim gv'$.

- SU(2)_c 3-plet: mixture of doublet and complex triplet. (SM Goldstones form such a triplet.) Couples to fermions via doublet component. No ϕVV coupling.

- Two $SU(2)_c$ singlets (which mix in general): one is the SM (doublet) Higgs and the other is a mixture of the neutral triplet states. SM Higgs part couples to fermions; both couple to gauge boson pairs.

Georgi-Machacek structure is used in Littlest Higgs with Custodial Symmetry model [Chang].

Breaking of custodial SU(2)

For a doublet the custodial SU(2) is unbroken in the gauge sector: ρ remains a prediction of the model even after radiative corrections are included.

But for our combined triplets, the $SU(2)_R$ is broken by the gauging of hypercharge as its T^3 generator.

Custodial SU(2)-breaking feeds in to the Higgs potential at oneloop and ρ gets a counterterm beyond tree level. Triplet-Higgs models beyond tree level

To use electroweak precision constraints, want to work at 1-loop.

First consider the SM.

Precision measurements are all in the EW gauge sector: determined by

- 3 parameters g, g' and v
- fermion quantum numbers (these don't get renormalized)

These 3 renormalizable parameters of the SM get counterterms beyond tree level.

Fix them with 3 "inputs"; then the rest of the EW precision observables are predicted. Usual choice is:

 $G_{\mu} = 1.16639(1) \times 10^{-5} \text{ GeV}$ $M_Z = 91.1876(21) \text{ GeV}$ $\alpha(M_Z)^{-1} = 127.934 \pm 0.027$

Heather Logan Neutrinos and extended Higgs sectors

Higgs mass is also not used to fix a counterterm; it shows up at 1-loop in the corrections.

EW precision fit can then be used to constrain the SM Higgs mass.

SM prediction at 1-loop: M_W is defined through muon decay:

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2}M_W^2 \bar{s}_{\theta}^2} [1 + \Delta r_{\rm SM}] \quad \text{with} \quad \bar{s}_{\theta}^2 = 1 - \frac{M_W^2}{M_Z^2} \quad \text{(on shell)}$$

and
$$\Delta r_{\rm SM} = -\frac{\delta G_{\mu}}{G_{\mu}} + \frac{\delta \alpha}{\alpha} - \frac{\delta \bar{s}_{\theta}^2}{\bar{s}_{\theta}^2} - \frac{\delta M_W^2}{M_W^2}.$$

Heather Logan

Neutrinos and extended Higgs sectors

All these are fixed in terms of:

- self-energies as enter through the counterterm-fixing conditions

- vertex and box diagrams contributing to muon decay

$$\frac{\delta G_{\mu}}{G_{\mu}} = -\frac{\Pi_{WW}(0)}{M_W^2} + \delta_{\text{box,vertex}}$$

$$\frac{\delta \alpha}{\alpha} = \Pi'_{\gamma\gamma}(0) + 2\frac{\overline{s}_{\theta}^2 \Pi_{\gamma Z}(0)}{\overline{c}_{\theta}^2}$$

$$\frac{\delta M_W^2}{M_W^2} = \frac{\Pi_{WW}(M_W^2)}{M_W^2}$$

$$\frac{\delta \overline{s}_{\theta}^2}{\overline{s}_{\theta}^2} = \frac{\overline{c}_{\theta}^2}{\overline{s}_{\theta}^2} \left[\frac{\delta M_Z^2}{M_Z^2} - \frac{\delta M_W^2}{M_W^2} \right] = \frac{\overline{c}_{\theta}^2}{\overline{s}_{\theta}^2} \left[\frac{\Pi_{ZZ}(M_Z^2)}{M_Z^2} - \frac{\Pi_{WW}(M_W^2)}{M_W^2} \right]$$

Top mass dependence enters quadratically through $\delta \bar{s}_{\theta}^2/\bar{s}_{\theta}^2$.

Key difference with triplet models:

4 gauge sector parameters instead of 3. g, g', v, and v'.

No more on-shell definition for s_{θ}^2 : $\rho = M_W^2/M_Z^2 \overline{c}_{\theta}^2 \neq 1$ at tree level!

Need 4 inputs to fix 4 free counterterms: $G_{\mu} = 1.16639(1) \times 10^{-5} \text{ GeV}$ $M_Z = 91.1876(21) \text{ GeV}$ $\alpha(M_Z)^{-1} = 127.934 \pm 0.027$ $s_{\theta}^2 = 0.23150 \pm 0.00016$ (effective leptonic mixing angle)

where
$$\frac{\operatorname{Re}(g_V^e)}{\operatorname{Re}(g_A^e)} = 4s_{\theta}^2 - 1$$

- Use these 4 inputs to fix the 4 counterterms at 1-loop level.

- Predict M_W in terms of other free model parameters that enter through 1-loop diagrams.

- Use the measured M_W value to constrain the model parameters.

Littlest Higgs model: allowed parameter space for v' at one loop

[Chen & Dawson, hep-ph/0311032]

Plotted against
$$s' = g'_2/\sqrt{g'_1^2 + g'_2^2}$$
.
Scanned over $s = g_2/\sqrt{g_1^2 + g_2^2}$ and $x_L = \lambda_1^2/(\lambda_1^2 + \lambda_2^2)$.

Note $v' \gtrsim 1$ GeV required for low $f \sim 2$ TeV.

Chen & Dawson used $\Delta M_W \simeq 60$ MeV at 1σ ; plot presumably a 2σ constraint.

Heather Logan Neutrinos and extended Higgs sectors TRIUMF, Oct. 2007

40

Looks straightforward, but there is a lot of subtle physics there.

 $\delta s_{\theta}^2/s_{\theta}^2$ no longer fixed in terms of W and Z self-energies. Determined instead by RC's to $\sin^2 \theta_{\text{eff}}^{\text{lept}}$: $\gamma - Z$ mixing, vertex & box diagrams.

1-loop M_W correction no longer quadradically sensitive to top mass!

Data point: expt values, 1σ error bars. SM: includes complete top/bottom quark, SM gauge, and SM Higgs contributions with $m_H = 120$ GeV. TM = 1 doublet + 1 real triplet: plot includes only top quark contributions; other free params chosen to intersect data point.

Heather Logan

Neutrinos and extended Higgs sectors

Summary

Triplet-Higgs models interesting from neutrino mass perspective

Dimension-4 operator for neutrino mass: renormalizable Lagrangian!

Rich LHC phenomenology - Opportunity to directly probe Majorana neutrino Yukawa matrix Y_{ij} in LNV triplet decays

 $\rho \neq 1$ at tree level: EW precision constraints on v'Neutrino mass: nice to have $v' \ll \text{GeV}$: no worries about ρ . Model-building with real and complex triplets – Georgi-Machacek.

Renormalization of triplet models: very different from SM.4 fundamental gauge-sector parameters.An excellent lesson in field theory renormalization.