Testing the Higgs mechanism

Heather Logan (Carleton University)

HEP Seminar – McGill University March 28, 2007

Outline:

- Introduction
 - How to test the Higgs mechanism
 - Standard Model versus New Physics
- Higgs couplings at the ILC
 - Impact of theoretical uncertainties
- Higgs couplings at the LHC
 - Advantages and disadvantages of model assumptions
- Invisible Higgs
 - Model assumptions, good and bad
- Conclusions

Heather Logan

Introduction: the Higgs mechanism

Introduce a scalar "Higgs" field H

- Doublet under SU(2)_L: $H = (\phi^+, \phi^0)^T$
- Carries $U(1)_Y$ hypercharge

Write down couplings of H:

- To gauge bosons via the covariant derivative, $\mathcal{L} = |\mathcal{D}_{\mu}H|^2$.
- To itself via the Higgs potential, $-\mathcal{L} = V = m^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$.
- To fermions via Yukawa couplings, $\mathcal{L} = y_f \overline{f_R} H^{\dagger} F_L$.

e.g.,
$$F_L = (u_L, d_L)^T$$
, $f_R = d_R$.

These couplings are all gauge invariant.

Choose the signs of the terms in the Higgs potential: $V = m^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$ where m^2 is negative and λ is positive

Potential is symmetric under $SU(2)_L \times U(1)_Y$ gauge symmetry, but the minimum of the potential is away from zero field value: $SU(2) \times U(1)$ symmetry is spontaneously broken.

Heather Logan

Testing the Higgs mechanism

At the minimum, Higgs field has a nonzero vacuum expectation value v.

Expand about the minimum:

$$H = \begin{pmatrix} G^+ \\ (h+v)/\sqrt{2} + iG^0/\sqrt{2} \end{pmatrix}$$

h is the massive excitation of the field: the physical Higgs boson.

 G^0 and G^+ are the would-be Goldstone bosons: they become the third polarization degree of freedom of the Z and W^+ gauge bosons.

With $v \neq 0$, the Higgs couplings to gauge bosons and fermions give those particles mass.

Covariant derivative gives gauge boson masses and coups to h:

 $\mathcal{L} = (\mathcal{D}_{\mu}H)^{\dagger} (\mathcal{D}^{\mu}H) + \cdots$

where

 $[Q = T_3 + Y/2]$

$$\mathcal{D}_{\mu} = \partial_{\mu} - igW_{\mu}^{a}T^{a} - ig'\frac{Y}{2}B_{\mu}$$

$$= \partial_{\mu} - i\frac{g}{\sqrt{2}} \left(W_{\mu}^{+}T^{+} + W_{\mu}^{-}T^{-}\right)$$

$$-i\frac{g}{\cos\theta_{W}}Z_{\mu} \left(T^{3} - \sin^{2}\theta_{W}Q\right) - ieQA_{\mu}$$

This gives: [extra 1/2 for the ZZ terms is a symmetry factor]

$$\mathcal{L} = (g^2 v^2 / 4) W^+ W^- + (g^2 v / 2) h W^+ W^- + (g^2 / 4) h h W^+ W^- + (g_Z^2 v^2 / 8) ZZ + (g_Z^2 v / 4) h ZZ + (g_Z^2 / 8) h h ZZ$$

where $g_Z = \sqrt{g^2 + g'^2}$.

Heather Logan

Testing the Higgs mechanism

Yukawa couplings $y_f \overline{f_R} H^{\dagger} F_L$ give fermion masses and couplings to *h*:

 $\mathcal{L} = (y_f v / \sqrt{2}) \overline{f}_R f_L + (y_f / \sqrt{2}) h \overline{f}_R f_L + \text{h.c.}$

Because of fixed couplings, Standard Model Higgs decay modes depend only on ${\cal M}_{\cal H}$:

Testing the Higgs mechanism

This simple linear relation between masses and Higgs couplings holds in the Standard Model.

But beyond the Standard Model, Higgs couplings can vary.

An example: Minimal Supersymmetric Standard Model (MSSM)

MSSM has two Higgs doublets, H_1 and H_2 , with two different vacuum expectation values, v_1 and v_2 .

W boson mass comes from sum of two covariant derivatives: $\mathcal{L} = |\mathcal{D}_{\mu}H_1|^2 + |\mathcal{D}_{\mu}H_2|^2, \text{ which gives } M_W^2 = \frac{g^2v_1^2}{4} + \frac{g^2v_2^2}{4} = \frac{g^2v_{SM}^2}{4}.$

So v_1 and v_2 must obey $v_1^2 + v_2^2 = v_{SM}^2 = 2M_W/g$. One unknown combination is left free: $v_2/v_1 \equiv \tan \beta$.

Two complex doublets \rightarrow 8 degrees of freedom

h: lightest CP-even Higgs

H, *A*, and H^{\pm} : heavier CP-even, CP-odd, and charged Higgses

 G^0 and G^{\pm} : unphysical Goldstone bosons

Mix to form mass eigenstates:

$$H_1 \cos\beta + H_2 \sin\beta = \left(\begin{array}{c} G^+ \\ [v_{SM} + iG^0 + h\sin(\beta - \alpha) + H\cos(\beta - \alpha)]/\sqrt{2} \end{array} \right)$$

$$-H_1 \sin \beta + H_2 \cos \beta = \left(\begin{array}{c} H^+ \\ [iA^0 + h\cos(\beta - \alpha) - H\sin(\beta - \alpha)]/\sqrt{2} \end{array} \right)$$

Couplings of h get modified from their SM values:

 $\begin{array}{ll} g_{hWW} = \sin(\beta - \alpha)g_{H_{SM}WW} & \text{likewise } Z \\ g_{hb\bar{b}} = [\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)]g_{H_{SM}b\bar{b}} & \text{likewise } d, s, \ e, \mu, \tau \\ g_{ht\bar{t}} = [\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)]g_{H_{SM}t\bar{t}} & \text{likewise } u, c \end{array}$

In most MSSM parameter space, H, A, and H^{\pm} are fairly heavy.

Mixing angle:
$$\cos(\beta - \alpha) \simeq \frac{1}{2} \sin 4\beta \frac{M_Z^2}{M_A^2} \longrightarrow 0$$
 for $M_A \gg M_Z$

Couplings of h approach their SM values – the decoupling limit.

Search for coupling deviations \rightarrow test Higgs sector structure!Heather LoganTesting the Higgs mechanismMcGill 2007-03-28

Higgs couplings at the ILC

Clean environment – no large QCD backgrounds

Well-known initial state – no parton distributions; energy/momentum of initial state known

Model-independent technique: Z recoil

Use 4-momentum conservation to reconstruct Higgs events looking only at the recoiling Z.

Initial state: $e^- \rightarrow \star \leftarrow e^+$ $p(e^-) = (E_{cm}/2, 0, 0, E_{cm}/2), \quad p(e^+) = (E_{cm}/2, 0, 0, -E_{cm}/2)$ Initial 4-momentum $= p(e^-) + p(e^+) = (E_{cm}, 0, 0, 0)$

Final state: $Z \leftarrow \star \longrightarrow H$ Z decays to dileptons (e^+e^- or $\mu^+\mu^-$) and the Higgs goes off in the other direction.

Measure the 4-momenta of the Z decay leptons: $p(\ell^-)$ and $p(\ell^+)$. Require that $p(\ell^-)$ and $p(\ell^+)$ reconstruct the Z: $[p(\ell^-) + p(\ell^+)]^2 = M_Z^2$

Use energy-momentum conservation to get the Higgs 4-momentum:

$$p(Higgs) = p(e^{-}) + p(e^{+}) - p(\ell^{-}) - p(\ell^{+})$$
.

H.J. Schreiber et al., DESY-ECFA Conceptual LC Design Report (1997)

"Recoil mass" is $[p(Higgs)]^2 = M_H^2$.

See a Higgs mass peak in the Z recoil spectrum.

Count events in the recoil Higgs mass peak: get the ZH cross section.

Count Higgs decay products in the recoil Higgs mass peak: get the Higgs branching ratios.

Model-independent!!

ZH cross section measurement does not depend on Higgs decay mode.

BR measurements do not depend on production cross-section assumptions.

Heather Logan

Testing the Higgs mechanism

From $WW \rightarrow H$ cross section, get WWH coupling

- \rightarrow predict $H \rightarrow WW$ partial width
- \rightarrow Combine with BR($H \rightarrow WW$) to extract total width

 \rightarrow Extract all the other Higgs couplings from respective BRs Totally model independent!

Heather Logan

Testing the Higgs mechanism

Measure Higgs branching ratios to high precision:

Table 1: Summary of expected precisions on Higgs boson branching ratios from existing studies within the ECFA/DESY workshops. (a) for 500 fb⁻¹ at 350 GeV; (b) for 500 fb⁻¹ at 500 GeV; (c) for 1 ab⁻¹ at 500 GeV; (d) for 1 ab⁻¹ at 800 GeV; (e) as for (a), but method described in [35] (see text).

Mass(GeV)	120	140	160	180	200	220	240	280	320
Decay				Relative P	recision (%)			
bb	2.4 (a) / 1.9 (e)	2.6 (a)	6.5 (a)	12.0 (d)	17.0 (d)	28.0 (d)			
$c\overline{c}$	8.3 (a) / 8.1 (e)	19.0 (a)							
au au	5.0 (a) / 7.1 (e)	8.0 (a)							
$\mu\mu$	30. (d)								
gg	5.5 (a) /4.8 (e)	14.0 (a)							
WW	5.1 (a) / 3.6 (e)	2.5 (a)	2.1 (a)		3.5 (b)		5.0 (b)	7.7 (b)	8.6 (b)
ZZ			16.9 (a)		9.9 (b)		10.8 (b)	16.2 (b)	17.3 (b)
$\gamma\gamma$	23.0 (b) / 35.0 (e)								
$\mathrm{Z}\gamma$		27.0 (c)							

review talk by K. Desch, hep-ph/0311092

With a 1 TeV ILC one does even better (larger cross sections, more statistics):

	Higgs Mass (GeV)					
	115	120	140	160	200	
$\Delta(\sigma \cdot B_{bb})/(\sigma \cdot B_{bb})$	± 0.003	± 0.004	± 0.005	± 0.018	± 0.090	
$\Delta(\sigma \cdot B_{WW})/(\sigma \cdot B_{WW})$	± 0.021	± 0.013	± 0.005	± 0.004	± 0.005	
$\Delta(\sigma \cdot B_{gg})/(\sigma \cdot B_{gg})$	± 0.014	± 0.015	± 0.025	± 0.145		
$\Delta(\sigma \cdot B_{\gamma\gamma})/(\sigma \cdot B_{\gamma\gamma})$	± 0.053	± 0.051	± 0.059	± 0.237		
$\Delta(\sigma \cdot B_{ZZ}) / (\sigma \cdot B_{ZZ})$					± 0.013	

from Barklow, hep-ph/0312268

```
ILC at 1000 GeV, 1000 fb<sup>-1</sup>
-80% e^- polarization, +50% e^+ polarization
```

With experimental uncertainties at the percent level, must consider theory uncertainties too.

 $H \rightarrow q\bar{q}$: QCD corrections to 3 loops, EW corrections to 1 loop. Dominant corrections absorbed by using $\overline{m_q}(M_H)$ in partial width. Uncertainty ~ 1% remaining.

 $H \rightarrow \ell \ell$: EW corrections to 1 loop. Uncertainty negligible for our purposes.

 $H \rightarrow W^{(*)}W^{(*)}/Z^{(*)}Z^{(*)} \rightarrow 4f$: NLO EW + QCD corrections including off-shell gauge boson effects now available – PROPHECY4F. Uncertainty ~ 0.5% remaining.

 $H \rightarrow gg$: N³LO QCD corrections known, plus leading EW. Remaining scale dependence ~ 3%.

 $H \rightarrow \gamma \gamma$: NLO EW + NNLO QCD corrections known. Uncertainty negligible for our purposes. WBF \rightarrow *H* production cross section: 1-loop EW known. Uncertainty ~ 0.5% remaining.

Summary:

	Theory uncertainty		
Higgs partial width	in literature	in HDECAY	
$\Gamma_{b\overline{b}}, \ \Gamma_{c\overline{c}}$	1%	1%	
$\Gamma_{ au au}$, $\Gamma_{\mu\mu}$	0.01%	0.01%	
Γ_{WW} , Γ_{ZZ}	0.5%	5%	
Γ_{gg}	3%	16%	
$\Gamma_{\gamma\gamma}$	0.1%	4%	
${\sf \Gamma}_{Z\gamma}$	4%	4%	
Higgs production cross section			
$\sigma_{e^+e^- \rightarrow \nu \bar{\nu} H}$	0.5%	_	

[Droll & H.L., hep-ph/0612317]

There are al	so uncertainties in th	ne "inputs": mostly m	$a_b, m_c, \alpha_s.$
Parameter	Value	Percent uncertainty	Source
$\overline{\alpha_s(m_Z)}$	0.1185 ± 0.0020	1.7%	PDG
$\overline{m_b}(M_b)$	$4.20\pm0.04~{ m GeV}$	0.95%	B decays
$\overline{m_c}(M_c)$	$1.224\pm0.057~{ m GeV}$	4.7%	B decays

 $\overline{m_b}(M_b)$ and $\overline{m_c}(M_c)$ extracted from fits to semileptonic *B* meson decay spectra using HQET.

Can also get the masses from $e^+e^- \rightarrow$ hadrons or unquenched lattice QCD. Methods developing; close to being competitive to *B* decays.

Input uncertainties propagate into uncertainties in the SM Higgs partial widths:

Normalized derivatives of Higgs partial widths									
	$\alpha_s(m_Z)$			$\overline{m_b}(M_b)$			$\overline{m_c}(M_c)$		
m_H	120 GeV	140 GeV	160 GeV	120 GeV	140 GeV	160 GeV	120 GeV	140 GeV	160 GeV
$\Gamma_{b\overline{b}}$	-1.177	-1.217	-1.249	2.565	2.567	2.568	0.000	0.000	0.000
$\Gamma_{c\overline{c}}$	-4.361	-4.400	-4.432	-0.083	-0.084	-0.084	3.191	3.192	3.192
${\sf \Gamma}_{gg}$	2.277	2.221	2.175	-0.114	-0.112	-0.104	-0.039	-0.032	-0.027
$\Gamma_{\gamma\gamma}$	0.002	0.002	0.001	0.010	0.008	0.005	0.012	0.009	0.005

[Droll & H.L., hep-ph/0612317]

Concentrate on lower Higgs mass region.

Precisions from before:

SM Higgs	BR uncertainties fro	om 500 fb $^{-1}$ at 350 GeV (no beam pol'n)
	$m_H = 120 { m GeV}$	140 GeV
$BR(b\overline{b})$	2.4%	2.6%
$BR(c\overline{c})$	8.3%	19.0%
BR(au au)	5.0%	8.0%
BR(WW)	5.1%	2.5%
BR(gg)	5.5%	14.0%

[Desch, hep-ph/0311092]

SM Higgs $\sigma \times BR$ statistical uncertainties from 1000 fb ⁻¹ at 1000 GeV							
	$m_H = 115 { m GeV}$	120 GeV	140 GeV				
$\sigma imes BR(b\overline{b})$	0.3%	0.4%	0.5%				
$\sigma imes BR(WW)$	2.1%	1.3%	0.5%				
$\sigma imes BR(gg)$	1.4%	1.5%	2.5%				
$\sigma imes BR(\gamma\gamma)$	5.3%	5.1%	5.9%				

Beam pol'ns of -80% for electrons and +50% for positrons assumed.

[Barklow, hep-ph/0312268]

To evaluate impact of theory uncertainties, need a "benchmark": choose differentiation of SM from MSSM Higgs.

Choose a particular MSSM scenario: m_h^{max} benchmark scenario.

Compute a $\Delta \chi^2$ both without and with theory and parametric uncertainties; see how this affects the "distinguishing power" of ILC.

Consider "ILC early phase": 500 fb⁻¹ at 350 GeV C.o.M. energy, and "ILC late phase": 1000 fb⁻¹ at 1000 GeV C.o.M. energy. chosen to match experimental studies.

Theory/param uncerts not important in early-phase running. Reduce "reach" in M_A by about 15% in late-phase running.

Heather Logan

Testing the Higgs mechanism

No single source gives majority of the effect.

Heather Logan

Testing the Higgs mechanism

Breakdown of sources of parametric uncertainty:

No single source gives majority of the effect.

Heather Logan

Testing the Higgs mechanism

Results:

- Theory and parametric uncertainties not an issue for initial phase of ILC: we are in good shape.

- After TeV-phase ILC running, though, thy/param uncerts reduce the "reach" in M_A by about 15%.

Starting to become relevant.

- No single source dominates the theory uncertainties: Need to take multiple calculations to the next level to improve this situation.

Higgs couplings at the LHC

Higgs will be accessible via multiple production mechanisms:

Testing the Higgs mechanism

Higgs production cross sections are reasonably large: 1 pb \times 1 fb⁻¹ = 1000 events

M. Spira, Fortsch. Phys. 46, 203 (1998)

If the Higgs is Standard Model-like, LHC will discover it!

S. Asai et al., Eur. Phys. J. C 32S2, 19 (2004)

Heather Logan

Testing the Higgs mechanism

Higgs will be accessible in many production and decay channels: (GF = gluon fusion, WBF = weak boson fusion)

 $\mathsf{GF} \ gg \to H \to ZZ$ Inclusive $H \rightarrow \gamma \gamma$ WBF $qqH \rightarrow qqZZ$ WBF $qqH \rightarrow qq\gamma\gamma$ $t\bar{t}H$, $H \rightarrow \gamma\gamma$ $\mathsf{GF} qq \to H \to WW$ WH, $H \rightarrow \gamma \gamma$ WBF $qqH \rightarrow qqWW$ $ZH, H \rightarrow \gamma \gamma$ $t\bar{t}H$, $H \rightarrow WW$ $WH, H \rightarrow WW$ WBF $qqH \rightarrow qq\tau\tau$

$$t\bar{t}H$$
, $H \rightarrow b\bar{b}$

Testing the Higgs mechanism

Higgs couplings determine production cross sections and decay branching ratios \longrightarrow determine the rates in each channel.

LHC, 200 fb⁻¹ (except 300 fb⁻¹ for $ttH, H \rightarrow bb, WH, H \rightarrow bb$). Zeppenfeld, hep-ph/0203123

Testing the Higgs mechanism

If there's a discrepancy, want to know where it comes from.

Take ratios of rates with same production and different decays: production cross section and Higgs total width cancel out.

LHC, 200 fb⁻¹ (except 300 fb⁻¹ for $ttH, H \rightarrow bb, WH, H \rightarrow bb$). Zeppenfeld, hep-ph/0203123

Heather Logan

Testing the Higgs mechanism

Ratios of couplings are nice.

But can we measure each coupling independently?

Difficulties:

- No measurement of total production rate.

- Some decays cannot be directly observed at LHC due to backgrounds: $H \rightarrow gg$, $H \rightarrow$ light quarks, etc.

Incomplete data: can't extract individual couplings in a totally model-independent way.

Multi-dimensional "error ellipsoid" is unbounded in some directions.

Observation of Higgs production

 \longrightarrow lower bound on production couplings

 \rightarrow lower bound on Higgs total width.

But: no model-independent upper bound on Higgs total width.

To make progress, have to make some theoretical assumptions.

Testing the Higgs mechanism

Consider Higgs models containing only SU(2) doublets/singlets.

- hWW, hZZ couplings related by custodial SU(2).
- hWW, hZZ couplings bounded from above by SM values.

This is a mild assumption!

- True in most good models: MSSM, NMSSM, 2HDM, etc.
- Larger Higgs multiplets stringently constrained by ρ parameter.

Theoretical constraint $\Gamma_V \leq \Gamma_V^{SM}$ \oplus measurement of Γ_V^2/Γ_{tot} from WBF $\rightarrow H \rightarrow VV$ \rightarrow upper bound on Higgs total width.

...slicing the error ellipsoid...

Combine with lower bound on Higgs total width from production couplings.

- Interplay constrains remaining Higgs couplings.
- Make no assumptions on unexpected/unobserved Higgs decay modes.

Heather Logan

Must include the appropriate systematic uncertainties:

5% overall Luminosity normalization

Theory uncertainties on Higgs production: 20% Gluon Fusion 15% ttH assoc. prod. 7% WH, ZH assoc. prod. 4% Weak Boson Fusion

Reconstruction/identification efficiencies:

2% leptons 2% photons 3% b quarks 3% τ jets 5% forward tagging jets and veto jets (for WBF)

Background extrapolation from side-bands (shape): from 0.1% for $H \rightarrow \gamma \gamma$

to 5% for $H \to W W$ and $H \to \tau \tau$

to 10% for $H \rightarrow b\overline{b}$

Result: fit of Higgs couplings-squared

Dührssen, Heinemeyer, H.L., Rainwater, Weiglein & Zeppenfeld, hep-ph/0406323

Testing the Higgs mechanism

Another approach: fit observed rates to a particular model.

Fits within a model are more constrained than a general fit of independent Higgs couplings.

Model constraints \rightarrow fewer parameters: taking a slice through the "error ellipsoid."

Get tighter constraints as a result of the model assumption. We saw this already when taking $g_{HWW,HZZ} \leq g_{HWW,HZZ}^{SM}$.

Lose generality, but gain constraining power: This is fine as long as you know what your assumptions are!

Can use this approach to test consistency with individual models.

Example: chi-squared fits in MSSM, m_h^{max} scenario

from Dührssen, Heinemeyer, H.L., Rainwater, Weiglein & Zeppenfeld, hep-ph/0406323

Heather Logan

Testing the Higgs mechanism

The SM Higgs is very narrow for $M_H \lesssim 160$ GeV.

If Higgs couples with electroweak strength to a neutral (quasi)stable particle (e.g., dark matter) with mass $< M_h/2$, then $h \rightarrow$ invisible can be the dominant decay mode.

Testing the Higgs mechanism

The Higgs *could* decay invisibly

- $h
 ightarrow { ilde \chi}_1^0 { ilde \chi}_1^0$ in MSSM, NMSSM
- $\bullet \ h \to SS$ in simple models of scalar dark matter
- $h \rightarrow KK$ neutrinos in extra dimensions
- $h \rightarrow$ Majorons
- . . .

Shouldn't just assume Higgs will be SM-like.

Even small additions (e.g., singlet scalar dark matter) can make $BR(h \rightarrow invis.)$ large.

Let's cover all our bases!

"Invisible" Higgs is not that hard to "see": missing transverse momentum (p_T) . $h \rightarrow jj$ is much harder. Limits on invisible decay modes:

95% CL exclusion limits with 30 fb⁻¹ at LHC [ATL-PHYS-PUB-2006-009]

 ξ^2 is a scaling factor: $\sigma \times BR(H \rightarrow invis) \equiv \xi^2 \sigma_{SM}$

Heather Logan

Testing the Higgs mechanism

Extracting the mass of an invisible Higgs: Mass of h_{inv} accessible only through production process.

Measure signal rate.

Assuming SM production cross section and 100% invisible decay:

- $Z + h_{inv}$: $\Delta m_h = 30-40$ (12-14) GeV with 10 (100) fb⁻¹.
- WBF: $\Delta m_h \simeq 40$ (30) GeV with 10 (100) fb⁻¹.

Testing the Higgs mechanism

What if production rate is not SM-like? What if decay is not 100% invisible?

For a more model-independent M_h extraction, take the ratio of $Z + h_{inv}$ and WBF rates. Davoudiasl, Han & H.L. (2004)

 $Z + h_{inv} \sim hZZ$ coupling; WBF $\sim hWW, hZZ$ couplings – related by SU(2) in models with only Higgs doublets/singlets.

Ratio method: $\Delta m_h \simeq 35-50 \ (15-20) \ \text{GeV}$ with 10 (100) fb⁻¹.

Not great, but rather model-independent.

Heather Logan

Testing the Higgs mechanism

500 fb⁻¹ at 350 GeV. Dashes = invisible rate; dots = Higgsstrahlung cross section

M. Schumacher, LC-PHSM-2003-096

Get the Higgs mass from recoil method.

Heather Logan

Testing the Higgs mechanism

Conclusions

If the Higgs mechanism is realized in nature, LHC and ILC data will let us test it.

In high precision measurements, theory uncertainties begin to play a role.

- Production cross section, decay partial widths, SM input parameters at late-phase ILC

- Higgs production cross sections at LHC

Model-independent measurements are always best, but model assumptions are sometimes necessary.

- Nothing wrong with testing individual models

- Keep assumptions as mild as possible for maximum generality

- Appropriate theory assumptions can reveal interesting relations in the data