

# WG3 Extended Scalars\* status report

\*Formed from the merger of the Charged Higgs and Neutral Extended Scalars subgroups in May 2018

> Heather Logan Carleton University Ottawa, Canada

LHC HXSWG 15th General Assembly Meeting 2018 December 11





No need to search for each one separately – just need to capture the full range of phenomenology so that nothing is missed.

 $\rightarrow$  Identify prototypical signatures and codify as benchmarks

 $\rightarrow$  Prioritize based on how common / universal a signature is across models

 $\rightarrow$  Understand interplay between direct searches and  $h_{125}$  coupling measurements to constrain parameter space

Heather Logan (Carleton U.)WG3 Extended Scalars2018 Dec 11

Meetings over the past year: (agendas in the backup slides)

- 2018 Mar 13: meeting on signatures for low-mass fermiophobic scalars in Georgi-Machacek model

- Focus on Drell-Yan production of pairs of  $H_5$  states
- $H_5^0 \rightarrow \gamma \gamma$ : diphoton resonance fiducial xsec limits  $\rightarrow$  recast
- $H_5^{\pm} \rightarrow W^{\pm}\gamma$ : study in progress
- $H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ : Run-1 theorist-recast:  $m_{H_5^{\pm\pm}} \gtrsim 75$  GeV
- 2018 Sep 20: theory report on  $H^{\pm} \rightarrow W^{\pm} \gamma$  to WG3 meeting
  - UFO file available with  $H^{\pm}W^{\mp}\gamma$  effective vertex (GM model)

- 2018 Oct 24: open meeting for benchmark proposals & discussion

- 8 talks, many benchmarks; some details in following slides

The simplest extension: SM + real singlet (RxSM)

Two physical Higgs bosons  $\phi^{0,r}$  (doublet) and s (singlet)

Mass eigenstates:  $m_h < m_H$  $h = \cos \alpha \phi^{0,r} - \sin \alpha s$   $H = \sin \alpha \phi^{0,r} + \cos \alpha s$ 

All couplings are SM times  $\cos \alpha$  for h, SM times  $\sin \alpha$  for H. Only possible new decay channel is  $H \rightarrow hh$ .

 $\rightarrow$  Interpretation for SM-like Higgs coupling measurements as a single overall signal-strength modifier  $\mu\equiv\cos\alpha$ 

 $\rightarrow$  Interpretation for searches for heavy SM-like Higgs boson with overall suppression of all couplings  $\mu_H \equiv \sin \alpha$ 

## Combined limits on $|\sin \alpha|$

(A. Ilnicka, TR, T. Stefaniak, Mod.Phys.Lett. A33 (2018) no.10n11, 1830007)



Newest update using Run II results in HiggsSignals: Signal strengths strongest constraint up to 800 GeV:  $\sin \alpha \le 0.22$ 

Heather Logan (Carleton U.) WG3 Extended Scalars

Benchmark for scalar resonance  $H \rightarrow hh$  ( $h = h_{125}$ ) in RxSM

Production cross section of  $H = \sin^2 \alpha \times \sigma_{SM}(M_H)$ 

| $m_H[{ m GeV}]$ | $ \sin lpha _{\sf max}$ | $BR_{\min}^{H \to hh}$ | $BR_{\max}^{H \rightarrow hh}$ | $m_H[GeV]$ | $ \sinlpha _{\sf max}$ | $BR_{\min}^{H \to hh}$ | $BR_{\max}^{H \to hh}$ |
|-----------------|-------------------------|------------------------|--------------------------------|------------|------------------------|------------------------|------------------------|
| 260             | 0.22                    | 0.17                   | 0.32                           | 470        | 0.22                   | 0.23                   | 0.29                   |
| 270             | 0.22                    | 0.22                   | 0.37                           | 520        | 0.22                   | 0.20                   | 0.27                   |
| 280             | 0.22                    | 0.23                   | 0.39                           | 590        | 0.22                   | 0.20                   | 0.26                   |
| 290             | 0.22                    | 0.24                   | 0.40                           | 670        | 0.22                   | 0.20                   | 0.26                   |
| 310             | 0.22                    | 0.25                   | 0.40                           | 770        | 0.22                   | 0.22                   | 0.24                   |
| 330             | 0.22                    | 0.25                   | 0.39                           | 880        | 0.19                   | 0.22                   | 0.25                   |
| 350             | 0.22                    | 0.25                   | 0.38                           | 920        | 0.18                   | 0.22                   | 0.25                   |
| 370             | 0.22                    | 0.24                   | 0.36                           | 980        | 0.17                   | 0.23                   | 0.25                   |
| 400             | 0.22                    | 0.22                   | 0.32                           | 1000       | 0.16                   | 0.23                   | 0.25                   |

Minimal and maximal branching ratios for  $H \rightarrow h h$ 

Tania Robens, WG3 Extended Scalars subgroup meeting, 2018/10/24

Heather Logan (Carleton U.)WG3 Extended Scalars2018 Dec 11

Model-specific electroweak radiative corrections calculated!



### Real Singlet model

 $H \rightarrow hh$ 

NLO Corrections shown to be only a few percent

BOJARSKI, CHALONS, LOPEZ-VAL, ROBENS, JHEP1602 (2016) 142

Heather Logan (Carleton U.)

WG3 Extended Scalars

## Two Higgs Doublet Model (2HDM)

Physical spectrum: h, H, A,  $H^{\pm}$  (assuming CP conservation) Same as in MSSM, but with two key differences:

1) MSSM has "Type II" Yukawa coupling structure; 2HDM can have any of Type I, II, X (Lepton Specific), or Y (Flipped).

2) MSSM quartic scalar couplings are fixed by g, g'; not true in 2HDM: can have much larger mass splittings among  $H, A, H^{\pm}$ 

Less constrained spectra allow for Higgs-to-Higgs decays:  $A \rightarrow ZH / H \rightarrow ZA$  (also  $A \rightarrow Zh_{125}$ )  $\rightarrow$  ATLAS + CMS  $H^+ \rightarrow W^+S$  ( $S = H, A, h_{125}$ )  $\rightarrow$  CMS,  $S = A(\rightarrow \mu\mu)$  $H \rightarrow AA \rightarrow$  ATLAS,  $AA \rightarrow 4\gamma$ 

 $H \to H^+H^- \to \tau \nu \to \text{not being done}$  $H/A \to W^{\pm}H^{\mp} \to \text{not being done}$ 

Heather Logan (Carleton U.) WG3 Extended Scalars

"Standard" high-mass charged Higgs search  $pp \rightarrow tH^- \rightarrow tW^-b\overline{b}$ :

In 2HDM can decay via  $H^- \rightarrow W^-A(\rightarrow b\overline{b})$ ; large  $H^-$  and Awidths give large interference between signal and background. A. Arhrib et al., 1712.05018

Study in progress to see how big an issue this is in MSSM:

D. Azevedo, R. Santos, S. Moretti, P. Sharma, R. Benbrik, A. Arhrib & R. Patrick  $H^+$  width can be large enough to lead to significant interference



Heather Logan (Carleton U.)

WG3 Extended Scalars

<sup>2018</sup> Dec 11

#### Interference effects in $H^{\pm}$ production at the LHC

#### D. Azevedo, R. Santos, S. Moretti, P. Sharma, Rachid Benbrik, A. Abdesslam, R. Patrick

Benchmarks in

MSSM

Kinematical Distributions

Conclusions

### Benchmark cross-sections

 $\rightarrow$  Benchmarks points are chosen where there is a large charged Higgs width and smallest  $m_A^0$ :

| Parameters           | hMSSM  | $m_{h}^{mod+}$ | ${\sf m}_{\sf h}^{{125}}(	ilde{	au})$ |
|----------------------|--------|----------------|---------------------------------------|
| $\mu$ (GeV)          | 200    | 200            | 1000                                  |
| aneta                | 1.01   | 3.42           | 3.19                                  |
| $m_{H^+}$ (GeV)      | 633.91 | 303.08         | 628.08                                |
| $\Gamma_{H^+}$ (GeV) | 27.777 | 0.925          | 2.677                                 |

#### **Production cross-sections:**

| Benchmark               | Signal (pb)                         | Background (pb)  |
|-------------------------|-------------------------------------|------------------|
| hMSSM                   | $(3.2402\pm0.0014)	imes10^{-2}$     | $13.092\pm0.004$ |
| $m_h^{ m mod+}$         | $(8.8502 \pm 0.0033) 	imes 10^{-2}$ | $13.103\pm0.004$ |
| $m_h^{125}(	ilde{	au})$ | $(1.6802\pm0.0058)	imes10^{-2}$     | $13.177\pm0.004$ |

| Benchmark               | Signal+Background (pb) | Interference (pb) |
|-------------------------|------------------------|-------------------|
| hMSSM                   | $13.143\pm0.004$       | $0.019\pm0.008$   |
| $m_h^{ m mod+}$         | $13.200\pm0.004$       | $0.009\pm0.008$   |
| $m_h^{125}(	ilde{	au})$ | $13.197\pm0.004$       | $0.003\pm0.008$   |

Where

$$(S+B)^2 = S^2 + B^2 + \text{Interference}$$
(1)

 $\rightarrow$  Still large errors but interferences seem to be present.

### Work in progress.

Heather Logan (Carleton U.)

WG3 Extended Scalars

2018 Dec 11

10

2HDM with explicit CP violation (C2HDM)

Physical spectrum:  $H_1$ ,  $H_2$ ,  $H_3$ ,  $H^{\pm}$ 

3 neutral scalars  $H_1$ ,  $H_2$ ,  $H_3$  are CP admixtures in general

- Motivated by need for new sources of CP violation to explain baryon asymmetry of the universe

- Constrained by null searches for electric dipole moments

New processes not present in Real 2HDM:

-  $H \rightarrow SS \rightarrow 4W \ (S \neq h_{125})$ :  $\rightarrow \text{ATLAS}$ 

-  $H_3 \rightarrow H_1 H_2$ : one of these must be  $h_{125}$ ; motivates  $H \rightarrow h_{125}S$ selection ( $m_S \neq 125 \text{ GeV}$ )  $\rightarrow$  not being done

Both of these can also happen in CP-conserving 2HDM + real singlet ("N2HDM"), which has 3 CP-even neutral Higgs bosons.

Heather Logan (Carleton U.)WG3 Extended Scalars2018 Dec 11

What do we know about possible CP-violating couplings of  $h_{125}$ ?

CP properties have been tested so far in hZZ, hWW couplings -  $h \rightarrow 4\ell$  distributions, production distributions in VBF

CP-even SM  $hV_{\mu}V^{\mu}$  is tree level / dim-4 operator CP-odd  $hV_{\mu\nu}\tilde{V}^{\mu\nu}$  is one-loop / dim-6 operator  $\rightarrow$  CP-odd coupling in hVV is generically small

Next place to look is the Yukawa couplings. For Type-II Yukawas:

t: 
$$Y_{C2HDM}^{TypeII} = \cos \alpha_2 Y_{2HDM}^{TypeII} - i\gamma_5 \sin \alpha_2 \cot \beta$$
  
b,  $\tau$ :  $Y_{C2HDM}^{TypeII} = \cos \alpha_2 Y_{2HDM}^{TypeII} - i\gamma_5 \sin \alpha_2 \tan \beta$ 

 $\alpha_2$  is mixing angle between pseudoscalar and scalars;  $\kappa_V = \cos \alpha_2 \sin(\beta - \alpha)$  so  $|\cos \alpha_2|$  must be near 1 already.

But,  $\tan \beta$  can be large: look for CP-violating effects in the Yukawas with  $\tan \beta$  enhancement!

Heather Logan (Carleton U.)WG3 Extended Scalars2018 Dec 11

Rate measurements constrain CP-even and CP-odd parts of Yukawa couplings to lie in a ring:  $Y = a + ib\gamma_5$ , rate  $\propto |a|^2 + |b|^2$ 

Electric dipole moment measurements (of n, atoms, molecules) constrain the amount of CP violation.

Depends on Yukawa structure!

Large CPV Yukawas excluded in Type I and

in Type II when  $h_{125} =$  lightest neutral scalar.

### Most interesting scenarios:

### Fontes et al, 1711.09419



Heather Logan (Carleton U.)

WG3 Extended Scalars



Probe using  $\tau$  decay distributions! Benchmark points available. Fontes et al, 1711.09419

Heather Logan (Carleton U.)

WG3 Extended Scalars

## Higgs Triplet Model (HTM)

SM Higgs doublet plus 1 complex triplet  $X = (\chi^{++}, \chi^{+}, \chi^{0})$ 

Motivation:  $y_{\nu}^{ij}L_iXL_j$  coupling gives neutrino masses  $m_{\nu} \sim y_{\nu} \langle \chi^0 \rangle$ 

 $\langle \chi^0 \rangle$  is very strongly constrained by the  $\rho$  parameter:

$$\rho \equiv \frac{\text{weak neutral current}}{\text{weak charged current}} = \frac{(g^2 + g'^2)/M_Z^2}{g^2/M_W^2} = \frac{v_\phi^2 + a\langle X^0 \rangle^2}{v_\phi^2 + b\langle X^0 \rangle^2}$$

$$a = 4 \left[ T(T+1) - Y^2 \right] c$$

$$b = 8Y^2$$

$$Q = T^3 + Y; \text{ SM doublet: } Y = 1/2$$

Expt:  $\rho = 1.00039 \pm 0.00019$  (2018 PDG)

 $\Rightarrow$   $\langle \chi^0 \rangle \lesssim$  GeV; negligible mixing of  $\chi^0$  with SM-like Higgs

Heather Logan (Carleton U.) WG3 Extended Scalars

 $\chi^{\pm\pm}$  decays to  $\ell^\pm\ell^\pm$  or  $W^\pm W^\pm$  depending on size of triplet vev



Rely on Drell-Yan production of  $\chi^{++}\chi^{--}$  or  $\chi^{\pm\pm}\chi^{\mp}$ .

Like-sign dilepton resonace search is very sensitive – exclude  $\chi^{\pm\pm}$  up to ~ 800 GeV depending on assumptions about  $e/\mu/\tau$  fractions  $\rightarrow$  ATLAS + CMS

Heather Logan (Carleton U.)WG3 Extended Scalars2018 Dec 11

 $\chi^{\pm\pm} \to W^{\pm}W^{\pm}$  search done for first time in Run 2 (Ws on shell)



Theorist recast of ATLAS Run-1 like-sign dimuon data sets lower bound  $m_{\chi^{++}}\gtrsim$  84 GeV Kanemura, Kikuchi, Yagyu & Yokoya, 1412.7603

Gap at intermediate masses< 200 GeV: need offshell Ws!</th>Heather Logan (Carleton U.)WG3 Extended Scalars2018 Dec 11

17

Models with triplets (or larger) contributing to EWSB:

Have to model-build to avoid  $\rho \neq 1$ . Only two known approaches:

1) Use the septet (T, Y) = (3, 2):  $\rho = 1$  by accident! Doublet  $(\frac{1}{2}, \frac{1}{2})$  + septet (3, 2): Scalar septet model Hisano & Tsumura, 1301.6455; Kanemura, Kikuchi & Yagyu, 1301.7303

2) Use global  $SU(2)_L \times SU(2)_R$  imposed on the scalar potential Global  $SU(2)_L \times SU(2)_R \rightarrow$  custodial SU(2) ensures tree-level  $\rho = 1$ Doublet + triplets (1,0) + (1,1): Georgi-Machacek model

Georgi & Machacek 1985; Chanowitz & Golden 1985Doublet + quartets  $(\frac{3}{2}, \frac{1}{2}) + (\frac{3}{2}, \frac{3}{2})$ :Generalized Georgi-<br/>Doublet + quintets (2, 0) + (2, 1) + (2, 2):Doublet + quintets  $(\frac{5}{2}, \frac{1}{2}) + (\frac{5}{2}, \frac{3}{2}) + (\frac{5}{2}, \frac{5}{2})$ :Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL & Rentala 2015 Larger than sextets  $\rightarrow$  too many large multiplets, violates perturbativity

<u>All</u> contain doubly-charged Higgs with  $H^{\pm\pm}W^{\mp}W^{\mp}$  coup.  $\propto \langle X^0 \rangle$ !

Heather Logan (Carleton U.) WG3 Extended Scalars

Georgi-Machacek model Georgi & Machacek 1985; Chanowitz & Golden 1985

SM Higgs (bi-)doublet + triplets (1,0) + (1,1) in a bi-triplet:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

Global SU(2)<sub>L</sub>×SU(2)<sub>R</sub>  $\rightarrow$  custodial symmetry  $\langle \chi^0 \rangle = \langle \xi^0 \rangle \equiv v_{\chi}$ 

Physical spectrum: Bi-doublet:  $2 \otimes 2 \rightarrow 1 \oplus 3$ 

 $\mathsf{Bi-triplet:} \ \mathbf{3}\otimes\mathbf{3}\to\mathbf{1}\oplus\mathbf{3}\oplus\mathbf{5}$ 

- Two custodial singlets mix  $\rightarrow h$ ,  $H \ m_h$ ,  $m_H$ , angle  $\alpha$ Usually identify h = h(125)
- Two custodial triplets mix  $\rightarrow (H_3^+, H_3^0, H_3^-) m_3 + \text{Goldstones}$ Phenomenology very similar to  $H^{\pm}, A^0$  in 2HDM Type I,  $\tan \beta \rightarrow \cot \theta_H$
- Custodial fiveplet  $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--}) m_5$ Fermiophobic;  $H_5VV$  couplings  $\propto s_H \equiv \sqrt{8}v_{\chi}/v_{\rm SM}$  $s_H^2 \equiv$  exotic fraction of  $M_W^2$ ,  $M_Z^2$

Heather Logan (Carleton U.) WG3 Extended Scalars

Explicit LHC searches up to now:

$$VBF \rightarrow H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow CMS \quad VBF + \text{like-sign dileptons} + \text{MET}$$
$$VBF \rightarrow H_5^{\pm} \rightarrow W^{\pm}Z \rightarrow \text{ATLAS} + CMS \quad VBF \ qq\ell\ell; \ VBF \ 3\ell + \text{MET}$$



Cross section  $\propto s_{H}^{2} \equiv$  fraction of  $M_{W}^{2}, M_{Z}^{2}$  due to exotic scalars

Heather Logan (Carleton U.)

WG3 Extended Scalars

Most stringent constraint: VBF  $\rightarrow H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$  CMS, arXiv:1709.05822



Also searches for VBF  $\rightarrow H_5^{\pm} \rightarrow W^{\pm}Z \rightarrow \text{ATLAS} + \text{CMS}$ Heather Logan (Carleton U.) WG3 Extended Scalars 2018 Dec 11



Recast ATLAS Run1  $\gamma\gamma$  resonance, GMCALC 1.5.0 beta

Extending Drell-Yan  $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$  search to masses below 200 GeV (w/ offshell Ws) could exclude entire low- $m_5$  region!

Heather Logan (Carleton U.)

WG3 Extended Scalars

For  $m_5$  below threshold for  $H_5 \rightarrow VV$  (V = W, Z) decays, BRs for loop-induced decays  $H_5^0 \rightarrow \gamma\gamma$ ,  $H_5^{\pm} \rightarrow W^{\pm}\gamma$  become important (remember  $H_5$  is fermiophobic)

Logan & Wu, 1809.09127 Sensitivity study for  $H_5^{\pm} \rightarrow W^{\pm}\gamma$  (production by Drell-Yan):



Expected 95%CL exclusion with 300 fb<sup>-1</sup> at 14 TeV LHC Recast ATLAS Run1  $\gamma\gamma$  resonance search current exclusion

 $H_5^{\pm} \rightarrow W^{\pm}\gamma$  simulation tool now public: UFO model for MG5

If low- $m_5$  region in GM model is excluded by  $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ , anew theory benchmark to motivate  $H^+ \rightarrow W^+\gamma$  will be needed.Heather Logan (Carleton U.)WG3 Extended Scalars2018 Dec 11

Several recent "low-mass" results rely on Drell-Yan production of pairs of new scalars.

Request to provide Drell-Yan xsec tables (in progress, NLO QCD)

- GM model  $pp \to H_5^{++}H_5^{--}$ ,  $H_5^{\pm\pm}H_5^{\mp}$ ,  $H_5^{+}H_5^{-}$ ,  $H_5^{\pm}H_5^{0}$ 

- HTM 
$$pp \rightarrow \chi^{++}\chi^{--}$$
,  $\chi^{\pm\pm}\chi^{\mp}$  etc.

- 2HDM

Simple relations between cross sections in different models due to gauge quantum numbers of scalars.

**GM model benchmark for**  $H \rightarrow hh$ : full parameter scan (Prelim)





WG3 Extended Scalars

<sup>2018</sup> Dec 11

Summary: "wish list" of missing search channels

 $H_3 \rightarrow H_1 H_2$ , where all three Higgs bosons have different masses.  $h_{125}$  could be any of these three. (our #1 priority for a new search)

 $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ : extend search to masses below 200 GeV (off-shell Ws). Production via Drell-Yan in pairs or with  $H^{\mp}$ .

$$H \to H^+ H^- \to \tau \nu \tau \nu \ (H \neq h_{125})$$

$$H \to W^+ H^- \ (H \neq h_{125})$$

 $H^+ \rightarrow W^+ \gamma$ : search for fermiophobic charged Higgs including at low mass (below 200 GeV); production via Drell-Yan.

 $H_{125} \rightarrow \tau \tau$  CP measurement from  $\tau$  polarization kinematic distributions [this belongs to SM Higgs Characterization]

Heather Logan (Carleton U.) WG3 Extended Scalars

# the end

Heather Logan (Carleton U.)

WG3 Extended Scalars

# BACKUP SLIDES

Heather Logan (Carleton U.)

WG3 Extended Scalars

2018 Dec 11

28

| WG3: Extended Scalars meeting                                               |                                                                                                                                                                                                                                                                                      |               |  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| $\blacksquare$ Tuesday 13 Mar 2018, 14:00 $\rightarrow$ 16:00 Europe/Zurich |                                                                                                                                                                                                                                                                                      |               |  |  |  |
| Vidyo or                                                                    | ♥ Vidvo only (CERN)                                                                                                                                                                                                                                                                  |               |  |  |  |
|                                                                             |                                                                                                                                                                                                                                                                                      |               |  |  |  |
| Videoconferer<br>Roo                                                        | ms WG3_Extended_Scalars_meeting                                                                                                                                                                                                                                                      | Join 😽        |  |  |  |
| There are                                                                   | minutes attached to this event. Show them.                                                                                                                                                                                                                                           |               |  |  |  |
| <b>14:00</b> → 14:05                                                        | Introduction<br>Speakers: Heather Logan (Carleton University), Dr Raffaele Angelo Gerosa (Univ. of California San Diego (US)), Rui Santos (IST), Shufang Su (University of<br>Arizona), Xiangyang Ju (University of Wisconsin Madison (US)), Xiaohu Sun (University of Alberta (CA)) | <b>③</b> 5m   |  |  |  |
| <b>14:05</b> → 14:25                                                        | Drell-Yan H5^0> gamma gamma<br>Speaker: Roberto Vega-Morales                                                                                                                                                                                                                         | <b>()</b> 20m |  |  |  |
| <b>14:25</b> → 14:45                                                        | H5+> W+ gamma theory<br>Speaker: Yongcheng Wu<br>IMSWGAinGM_ycwu                                                                                                                                                                                                                     | <b>()</b> 20m |  |  |  |
| <b>14:45</b> → 15:05                                                        | H5+> W+ gamma experiment<br>Speakers: Brigitte Vachon, Kays Haddad, Kays Haddad (McGill University, (CA))<br>Charged Higgs Grou                                                                                                                                                      | <b>()</b> 20m |  |  |  |
| <b>15:05</b> → 15:25                                                        | Drell-Yan H5 <sup>++</sup> > W+ W+> like-sign leptons<br>Speaker: Heather Logan (Carleton University)<br>M5pp-to-leptons.pdf                                                                                                                                                         | <b>()</b> 20m |  |  |  |
| <b>15:25</b> → 15:35                                                        | Discussion                                                                                                                                                                                                                                                                           | 🕲 10m         |  |  |  |



| WG3: Benchmark Discussion<br>Wednesday 24 Oct 2018, 17:00 → 20:00 Europe/Zurich |                                                                                                                                                           |              |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Videoconfere<br>Roc                                                             | ms WG3_Benchmark_Discussion                                                                                                                               | Join 🔶       |  |
| <b>17:00</b> → 17:05                                                            | Introduction<br>Speaker: Rui Santos (ISEL and CFTC-UL)                                                                                                    | © 5m         |  |
| <b>17:05</b> → 17:15                                                            | Benchmark Points for Type-I 2HDMs with a light h<br>Speaker: William Klemm                                                                                | <b>③</b> 10m |  |
| <b>17:15</b> → 17:25                                                            | Benchmark Point with low-mass CP-odd Higgs A with strong couplings to leptons and top quarks<br>Speaker: Dominik Stoeckinger                              | © 10m        |  |
| <b>17:25</b> → 17:35                                                            | Charged Higgs boson benchmarks from top quark polarization<br>Speaker: Adil Jueid                                                                         | <b>③</b> 10m |  |
| <b>17:35</b> → 17:45                                                            | IDM benchmarks for the LHC at 13 and 27 TeV<br>Speaker: Tania Robens                                                                                      | ③10m         |  |
| <b>17:45</b> → 17:55                                                            | Updated constraints for the Real Higgs Singlet Extension of the Standard Model<br>Speaker: Tania Robens<br>Singlet_robens.pdf                             | <b>③</b> 10m |  |
| <b>17:55</b> → 18:05                                                            | Interference effects in H± production at the LHC<br>Speaker: Duarte Azevedo                                                                               | © 10m        |  |
| <b>18:05</b> → 18:15                                                            | A benchmark for LHC searches for H5±±, H5±, and H05 in the Georgi-Machacek model including masses below 200 GeV<br>Speaker: Ben Keeshan<br>BenKeeshanHXSW | <b>③</b> 10m |  |
| <b>18:15</b> → 18:25                                                            | Benchmark scenarios in the C2HDM<br>Speaker: Jonas Wittbrodt                                                                                              | ③ 10m        |  |
| <b>18:25</b> → 18:45                                                            | Discussion                                                                                                                                                | <b>③</b> 20m |  |

 $H \to hh~{\rm cross~section~constrained~so~far:}~{\rm ATLAS,~arXiv:1804.06174}$ 



Georgi-Machacek model Georgi & Machacek 1985; Chanowitz & Golden 1985

SM Higgs (bi-)doublet + triplets (1,0) + (1,1) in a bi-triplet:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

Global SU(2)<sub>L</sub>×SU(2)<sub>R</sub>  $\rightarrow$  custodial symmetry  $\langle \chi^0 \rangle = \langle \xi^0 \rangle \equiv v_{\chi}$ 

Most general scalar potential invariant under  $SU(2)_L \times SU(2)_R$ :

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger} X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(X^{\dagger} X) + \lambda_3 \operatorname{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 [\operatorname{Tr}(X^{\dagger} X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger} t^a X t^b) - M_1 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U X U^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger} t^a X t^b) (U X U^{\dagger})_{ab}$$

9 parameters, 2 fixed by  $G_F$  and  $m_h \rightarrow 7$  free parameters. Aoki & Kanemura, 0712.4053 Chiang & Yagyu, 1211.2658; Chiang, Kuo & Yagyu, 1307.7526 Hartling, Kumar & HEL, 1404.2640

WG3 Extended Scalars 2018 Dec 11

Heather Logan (Carleton U.)

 $H^{++} \rightarrow W^+W^+$ : Below the WW threshold, same-flavour leptons can come from either of the Ws, leading to an interference term. Need full  $H^{++} \rightarrow 4f$  branching ratios simulation.



Kanemura, Kikuchi, Yagyu & Yokoya, 1407.6547

Heather Logan (Carleton U.)

WG3 Extended Scalars

HEL & Rentala, "All the generalized Georgi-Machacek models," 1502.01275



Set limit  $m_{H^{++}} \gtrsim$  76 GeV in GM model.

Heather Logan (Carleton U.)

WG3 Extended Scalars