LHC Phenomenology

Heather Logan Carleton University

CAP Congress 2007 University of Saskatchewan The big questions for the LHC era

Particle physics has many "big questions."

I think the three most important ones that LHC can hope to answer are these:

What is the origin of mass?

Why is gravity so much weaker than the other forces?

What is the dark matter?

What is the origin of mass?

What is the origin of mass?

Left-handed fermions and right-handed fermions have different $SU(2)_L \times U(1)_Y$ quantum numbers. Usual fermion mass term $\mathcal{L} = -m\overline{f_R}f_L$ is not gauge invariant.

Naive mass terms $\mathcal{L} = M^2 W^{\mu} W_{\mu}$ for W and Z bosons also violate gauge invariance.

Simplest way out: the Higgs mechanism.

Introduce a scalar "Higgs" field H

- Doublet under SU(2)_L: $H = (\phi^+, \phi^0)^T$
- Carries $U(1)_Y$ hypercharge

Couplings of H:

- To gauge bosons via the covariant derivative, $\mathcal{L} = |\mathcal{D}_{\mu}H|^2$.
- To itself via the Higgs potential, $-\mathcal{L} = V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$.
- To fermions via Yukawa couplings, $\mathcal{L} = y_f \overline{f_R} H^{\dagger} F_L$.

All these couplings are gauge invariant.

Heather Logan

LHC Phenomenology

This works if we choose the signs of the terms in the Higgs potential: $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$ with $\mu^2 < 0$ and $\lambda > 0$.

(why? SM gives no explanation.)

- Potential is symmetric under $SU(2)_L \times U(1)_Y$ gauge symmetry.
- Minimum is not at zero field value:

Universe must choose particular (non-symmetric) configuration. This is spontaneous symmetry breaking.

Expand Higgs field about the minimum:

$$H = \left(\begin{array}{c} G^+ \\ (h+v)/\sqrt{2} + iG^0/\sqrt{2} \end{array}\right)$$

Covariant derivative \rightarrow gauge boson masses and couplings to h:

$$\mathcal{L} = \frac{g^2}{4}(v+h)^2 W^{\mu+} W^{-}_{\mu} + \frac{g^2 + g'^2}{8}(v+h)^2 Z^{\mu} Z_{\mu}$$

Yukawa couplings \rightarrow fermion masses and couplings to h:

$$\mathcal{L} = \frac{y_f}{\sqrt{2}}(v+h)\overline{f}_R f_L + \text{h.c}$$

Mass of each particle is proportional to its Higgs coupling.

Slope is predicted by $v = 2M_W/g = 246$ GeV.

Test the SM Higgs mechanism by measuring the Higgs couplings to SM particles. First we need to discover the Higgs (if it exists). If the Higgs is Standard Model-like, LHC will discover it

Updates:

- $H \rightarrow \gamma \gamma$ better once K-factors included - ttH backgrounds bigger than expected: no longer a discovery channel

CMS reach is similar

S. Asai et al., Eur. Phys. J. C 32S2, 19 (2004)

Heather Logan

LHC Phenomenology

Higgs couplings determine production cross sections

M. Spira, Fortsch. Phys. 46, 203 (1998)

Higgs couplings determine decay branching ratios

HDECAY

Heather Logan

LHC Phenomenology

 \rightarrow Higgs couplings determine rates in each channel.

Test of the SM Higgs couplings: measure Higgs rates at LHC

LHC, 200 fb⁻¹ (except 300 fb⁻¹ for $ttH, H \rightarrow bb$, $WH, H \rightarrow bb$). Zeppenfeld, hep-ph/0203123Heather LoganLHC PhenomenologyCAP Congress - June 2007

Ratios of rates give ratios of partial widths. Add theory assumption: $hWW, hZZ \leq SM \rightarrow fit$ Higgs coups.

[L] 200 fb⁻¹ (except 300 fb⁻¹ for $ttH(\rightarrow bb)$, $WH(\rightarrow bb)$). Zeppenfeld, hep-ph/0203123 [R] Dührssen, Heinemeyer, H.L., Rainwater, Weiglein & Zeppenfeld, hep-ph/0406323

Heather Logan

LHC Phenomenology

Measure tensor structure of HVV coupling in VBF:

Most general *HVV* vertex $T^{\mu\nu}(q_1, q_2)$

$$T^{\mu\nu} = a_1 g^{\mu\nu} + a_2 (q_1 \cdot q_2 g^{\mu\nu} - q_1^{\nu} q_2^{\mu}) + a_3 \varepsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}$$

The $a_i = a_i(q_1, q_2)$ are scalar form factors

Physical interpretation of terms:

 $SM Higgs \qquad \mathcal{L}_I \sim H V_\mu V^\mu \longrightarrow a_1$

loop induced couplings for neutral scalar

CP even
$$\mathcal{L}_{eff} \sim HV_{\mu\nu}V^{\mu\nu} \longrightarrow a_2$$

CP odd $\mathcal{L}_{eff} \sim HV_{\mu\nu}\tilde{V}^{\mu\nu} \longrightarrow a_3$

Must distinguish a_1 , a_2 , a_3 experimentally

Slide from D. Zeppenfeld, plenary talk at SUSY'06 conference

Heather Logan

LHC Phenomenology

HVV vertex structure gives different distributions in jj azimuthal angle $\Delta \phi$:

 $HV^{\mu}V_{\mu}$ structure is "smoking gun" for Higgs mechanism EWSB.

Check for CP violation and/or loop-induced $HV^{\mu\nu}V_{\mu\nu}$ structure.

Heather Logan

LHC Phenomenology

Test structure of the Higgs potential $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$:

Measure the triple-Higgs coupling

 $gg \rightarrow HH \rightarrow WWWW$ at LHC - diagrams include $gg \rightarrow H^* \rightarrow HH$ via triple-Higgs coupling.

Also $gg \rightarrow HH \rightarrow bb\gamma\gamma$ at lower M_H : somewhat worse sensitivity. Baur, Plehn, Rainwater, hep-ph/0310056

Heather Logan

LHC Phenomenology

What is the origin of mass?

LHC will be able to:

- discover a SM(-like) Higgs
- test key features of the Higgs mechanism of electroweak symmetry breaking and mass generation

But the Higgs sector of the Standard Model introduces another problem...

Why is gravity so much weaker than the other forces?

Why is gravity so much weaker than the other forces?

This is really a question of energy scales.

Newton's constant: $G_N = 1/M_{\text{Planck}}^2$ Dimensions of [mass]⁻²: nonrenormalizable theory

Analogous to 4-Fermi theory: $f\bar{f} \rightarrow f\bar{f}$ via contact interaction Fermi's constant: $G_F = g^2/4\sqrt{2}M_W^2 = 1/\sqrt{2}v^2$

Why is the weak scale so much lower than the Planck scale?

Gauge couplings "run" because of vacuum polarization: $\alpha_s(Q) = \alpha_s(\mu) / [1 + (b/2\pi)\alpha_s(\mu) \log(Q/\mu)]$

Mass term in Higgs potential $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$ also runs:

But this running is quadratic, not logarithmic: $\mu^2 = \mu_0^2 + \Delta \mu^2$ with

$$\Delta \mu^2 = -\frac{3}{8\pi^2} y_t^2 \Lambda^2 + \frac{9}{64\pi^2} g^2 \Lambda^2 + \frac{1}{16\pi^2} \lambda^2 \Lambda^2 + \cdots$$

Scalar mass term is the only parameter that runs quadratically.

Heather Logan

LHC Phenomenology

$$\Delta \mu^2 = -\frac{3}{8\pi^2} y_t^2 \Lambda^2 + \frac{9}{64\pi^2} g^2 \Lambda^2 + \frac{1}{16\pi^2} \lambda^2 \Lambda^2 + \cdots$$

"Natural" prediction: $\mu^2 \sim \mu_0^2 \sim \Delta \mu^2$ Setting the cutoff $\Lambda \sim M_{\text{Planck}}$, this gives a prediction for μ^2 1,000,000,000,000,000,000,000,000,000 times too large. The second-worst prediction in all of physics? (after the cosmological constant :)

The vast difference in scale between M_{Planck} and M_W is the Hierarchy Problem.

Solution(s):

- Have μ_0^2 cancel $\Delta\mu^2$ to 30 decimal places? (Extreme fine tuning...)

- Lower the SM cutoff Λ to \sim TeV scale; introduce New Physics above this scale that stabilizes the hierarchy.

Two main classes of solutions to the hierarchy problem:

1) Supersymmetry

SUSY relates μ^2 to a fermion mass, which only runs logarithmically. Guarantees cancellation between SM loop diagrams and SUSY loop diagrams.

2) Composite Higgs

Higgs is some kind of bound state ("meson") of fundamental fermions, held together by a new force that gets strong at the TeV scale. Above a TeV there are no fundamental scalars, so no hierarchy problem.

[Includes extra-dimension / RS models by AdS/CFT duality.]

Heather Logan

LHC Phenomenology

Generic models of New Physics tend to be fairly tightly constrained by electroweak precision data.

New particles contribute to measured SM processes e.g. $f\bar{f} \rightarrow f\bar{f}$

Can parameterize their effect in terms of dimension-6 operators

$$\mathcal{L} = \frac{1}{[\Lambda_{\rm eff}^{\rm NP}]^2} \mathcal{O}_{\rm dim6} + \cdots$$

suppressed by an effective cutoff scale $[\Lambda_{eff}^{NP}]^2$.

EW precision data constrain Λ_{eff}^{NP} to be above 1.3 \sim 17 TeV depending on the operator.

Operator(s)	\mathbf{shift}	M_W	Z-pole	DIS	Q_W	$e^+e^- \to f\overline{f}$ (LEP2)	$e^+e^- \rightarrow W^+W^-$
O_{WB}	α, M_Z			\checkmark		\checkmark	\checkmark
O_h	M_Z						
O_{ll}^t	G_F					\checkmark	
O_{ll}^s, O_{le}						\checkmark	
O_{ee}						\checkmark	
$O_{lq}^s, O_{lq}^t, O_{lu}, O_{ld}$						\checkmark	
O_{eq}, O_{eu}, O_{ed}						\checkmark	
O_{hl}^t	G_F					\checkmark	\checkmark
O^s_{hl}, O_{he}				\checkmark		\checkmark	\checkmark
$O_{hu}, O_{hd}, O_{hq}^s, O_{hq}^t$							
O_W							\checkmark

Han & Skiba, hep-ph/0412166

EW precision constraints push Λ_{eff}^{NP} well above "natural" TeV scale, especially for strongly coupled NP.

- This is the source of difficulties with, e.g., Technicolor.

Called the "little hierarchy" problem: EW precision typically gives tight constraints on NP models.

But SUSY is not tightly constrained...

Biggest corrections come from tree-level exchange. Superpartners odd under R-parity: only exchanged in loops!

$$1/[\Lambda_{eff}^{NP}]^2 \rightarrow 1/16\pi^2[\Lambda^{NP}]^2 \longrightarrow \Lambda^{NP} \sim 0.1\Lambda_{eff}^{NP}$$

If the model has a parity like this, EW precision constraints are no longer an issue.

- Little Higgs with T-parity
- Universal Extra Dimensions (KK-parity)

If little hierarchy bothers you, then expect a "TeV-scale parity".

- Pair production of new particles
- Cascade decays to a stable "LTP" \leftarrow !

What is the dark matter?

What is the dark matter?

Need a stable neutral particle.

Thermal production in the early universe followed by freeze-out:

A WIMP is a natural dark matter candidate! TeV-scale parity makes it (more or less) automatic. ...but DM could still be something completely unrelated, like an axion.

Heather Logan

LHC Phenomenology

Lightning survey of Beyond-the-Standard-Model LHC phenomenology

Supersymmetry

Generic channel is jets + missing energy from squark and gluino production.

1) Mass spectrum

Cascade decays
$$\frac{\tilde{g}}{\tilde{q}_L} = \frac{\tilde{q}_L}{\tilde{N}_2} = \frac{\tilde{f}_L}{\tilde{N}_1}$$

Use kinematic edges to get mass differences in decay chain

LHC Phenomenology

2) Spin of superpartners

Universal Extra Dimensions can mimic SUSY Stable "LKP" \rightarrow jets + missing energy signatures.

LHC Phenomenology

2) Spin of superpartners

Need to be clever to find distinguishing observables! Kinematic distributions, etc.

Datta, Kong & Matchev, hep-ph/0509246

LHC Phenomenology

3) Coupling relations gauge couplings ↔ gaugino Yukawa couplings

Freitas & Skands, hep-ph/0606121

Requires ILC input for squark decay BRs.

Supersymmetry: variations

MSSM – minimal model Want to measure mass spectrum \rightarrow SUSY breaking mechanism!

NMSSM – extra Higgs singlet & neutralino Can't just fit to MSSM assumptions

Supersymmetric Fat Higgs model – heavier Higgs spectrum Compositeness at high scale Higgs phenomenology very different than MSSM

Composite Higgs

Venerable example: Technicolor No Higgs per se; Goldstones are composites ("pions") Strongly coupled: can't calculate reliably Calculate by analogy with QCD: too large effect on EW precision observables Hard to make top quark heavy enough

New understanding: AdS/CFT correspondence

Strongly coupled theories are dual to warped extra dimensional theories, like Randall-Sundrum model Warped 5-dim theories are calculable! Composite states ↔ states near IR brane

Composite Higgs: Randall-Sundrum model

Has a physical Higgs state Higgs lives on IR brane Higgs is composite

5-dim fermion wavefunction overlaps give natural explanation for exponential hierarchy of fermion masses

Composite Higgs: Randall-Sundrum model

Has a physical Higgs state Higgs lives on IR brane Higgs is composite

Z', KK gluon

- Decays preferentially to $t\overline{t}$: TeV resonances in top pairs!
- Enhanced coupling to right-handed top

t', other KK quarks

- Single production via qW, qZ fusion

Cross section larger than pair production for heavy masses

- Decays back to qW, qZ

Composite Higgs: Higgsless model

Minimal effective theory, supposed to be dual to technicolor New W', Z' gauge bosons ~ TeV: KK excitations from extra dimension Techni-rho type composite states

New states couple more strongly to top than to lighter fermions: Top lives near the IR brane Top is mostly-composite mixture Composite Higgs: Little hierarchy

EW precision forces compositeness scale relatively high: Have to fine tune a little to get Higgs light enough

Little Higgs models: use symmetries to make the Higgs lighter Eliminate one-loop Higgs mass corrections $\Delta \mu^2 \sim (g^2/16\pi^2)^2 \Lambda^2$ instead of $(g^2/16\pi^2) \Lambda^2$ Push compositeness scale up to 10 TeV without finetuning Need new particles at 1 TeV to cancel one-loop μ^2 corrections

Top partner T:

Heather Logan

LHC Phenomenology

Composite Higgs: Little Higgs

Han, McElrath, H.L. & Wang, hep-ph/0301040

Azuelos et al, hep-ph/0402037

Characteristic signature for new singlet quark coupled to Higgs & top.

Composite Higgs: Little Higgs

Gauge partners W_H , Z_H (and sometimes B_H): $W_H \rightarrow Wh$ characteristic signature 5 σ discovery w/ 300 fb⁻¹: Events/40 GeV/300 fb⁻¹ 450 **ATLAS ATLAS** $V \longrightarrow W_H \to \ell \nu b \overline{b}$ 400 $Z_H \to \ell \ell b \overline{b}$ 1.5 Signal 350 $V_H \to j j \gamma \gamma$ Background 300 $\cot \theta$ 250 200 $Z_H \to \ell^+ \ell^-$ 150 0.5 100 $W_H \to \ell \nu$ 50 0 1.5 2.5 3 4.5 2 3.5 5 5.5 1000 1200 400 600 800 1400 1600 M (TeV) M(W_L) (GeV)

Azuelos et al, hep-ph/0402037

 $Z_H \rightarrow \ell^+ \ell^-$, $W_H \rightarrow \ell \nu$ characteristic signatures for generic new gauge bosons.

Heather Logan

LHC Phenomenology

Composite Higgs: Little Higgs with T-parity
A kind of "deconstructed" UED: Looks more like SUSY!
Looser electroweak constraints → lighter new particles
T-parity → pair production, stable "LTP" (dark matter)

EW precision allows much heavier Higgs than SM

Hubisz, Meade, Noble, Perelstein, hep-ph/0506042

Heather Logan

LHC Phenomenology

Outlook

LHC begins in less than a year.

Best chance to answer big questions of particle physics.

What is the origin of mass?

- Discover SM(-like) Higgs
- Measure key Higgs properties

Why is gravity so much weaker than the other forces?

- New Physics at TeV scale to stabilize the hierarchy
- Many many possibilities; wide range of common signatures

What is the dark matter?

- EW-scale WIMP gives right relic density
- New TeV-scale parity to make it stable
- End of decay chain: missing energy signal