

LHC Phenomenology

Heather Logan Carleton University

31st Symposium on Physics in Collision Vancouver, Canada, 28 Aug-1 Sep, 2011

Outline

Introduction: why we expect new discoveries at the LHC

Higgs constraints and phenomenology

Frameworks for physics beyond the Standard Model I: Supersymmetry

Frameworks for physics beyond the Standard Model II: Composite models

Summary and outlook

The Standard Model is extremely successful so far.

Can't we get by with just the degrees of freedom that we've observed?

- 3 generations of quarks; CKM matrix for flavor physics
- 3 generations of charged leptons
- Neutrinos with mass (might need something new there)
- gluons from SU(3) strong interaction
- photon plus massive W^\pm and Z from SU(2) imes U(1)

(Electroweak symmetry is broken, but do we really have to worry about how?)

- (Dark matter?)
- (How to bring gravity into the quantum theory?)

The Standard Model is extremely successful so far.

Can't we get by with just the degrees of freedom that we've observed?

- 3 generations of quarks; CKM matrix for flavor physics
- 3 generations of charged leptons
- Neutrinos with mass (might need something new there)
- gluons from SU(3) strong interaction
- photon plus massive W^\pm and Z from SU(2) imes U(1)

(Electroweak symmetry is broken, but do we really have to worry about how?)

- (Dark matter?)
- (How to bring gravity into the quantum theory?)

The answer is no: the SM without a Higgs is intrinsically incomplete. Scattering of longitudinally-polarized Ws exposes need for a Higgs^{*}

Graphics from R.S. Chivukula, LHC4ILC 2007

*or something to play its role

Scattering of longitudinally-polarized Ws exposes need for a Higgs^{*}

 $SU(2) \times U(1) @ E^2$ Graphs W_L (a) $-6\cos\theta$ (a) (b) (b) - $\cos \theta$ (c) $-\frac{3}{2} + \frac{15}{2}\cos\theta$ W_I (d) (e) $(d + e) -\frac{1}{2} - \frac{1}{2} \cos\theta$ $\blacktriangleright O(E^0) \Rightarrow 4d m_H$ bound: $m_H < \sqrt{16\pi/3v} \simeq 1.0 \text{ TeV}$ Sum ▶ If no Higgs $\Rightarrow O(E^2) \Rightarrow E < \sqrt{8\pi}v \simeq 1.2 \,\text{TeV}$ including (d+e)

Graphics from R.S. Chivukula, LHC4ILC 2007

⁰⁰⁷ *or something to play its role

Standard Model Higgs mechanism:

Electroweak symmetry broken by an SU(2)-doublet scalar field:

$$H = \begin{pmatrix} G^+ \\ (h+v)/\sqrt{2} + iG^0/\sqrt{2} \end{pmatrix}$$

- G^+ and G^0 are the Goldstone bosons (eaten by W^+ and Z).
- v is the SM Higgs vacuum expectation value (vev), $v = 2m_W/g \simeq 246$ GeV.
- h is the SM Higgs field, a physical particle.

Electroweak symmetry breaking comes from the Higgs potential:

 $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$

where $\lambda \sim \mathcal{O}(1)$ and $\mu^2 \sim -\mathcal{O}(M_{\text{EW}}^2)$. $\Rightarrow v^2 = -\mu^2/\lambda = (246 \text{ GeV})^2$, $M_h^2 = 2\lambda v^2 = -2\mu^2.$

Heather Logan (Carleton U.) LHC Phenomenology

Direct SM Higgs searches – LEP expts final combination

Final LEP combination, Phys. Lett. B565, 61 (2003)

Heather Logan (Carleton U.) LHC Phenomenology

Tevatron combined, arXiv:1107.5518 [hep-ex], shown at EPS-HEP 2011

Heather Logan (Carleton U.) LHC Phenomenology

ATLAS-CONF-2011-135

CMS PAS HIG-11-022 (LP2011)

CMS + ATLAS exclude (at 95% CL) all mass regions except: below 145 GeV, 288–296 GeV, and above 464 GeV.

Higgs with suppressed gluon-fusion production coupling and/or suppressed WW, ZZ decay BRs still allowed in the SM-excluded mass regions.

Heather Logan (Carleton U.) LHC Phenomenology Physics In Collision 2011

LEP Electroweak Working Group (2011)

Precision EW favors low-mass allowed window, 114.4–145 GeV.(Fit valid only in SM context; new physics can change preferred mass range.)Heather Logan (Carleton U.)LHC PhenomenologyPhysics In Collision 2011

11

LHC Higgs channels: focus on SM, low-mass range

ATLAS-CONF-2011-135

CMS PAS HIG-11-022 (LP2011)

Not yet done: VBF $\rightarrow H \rightarrow \tau\tau, WW, ZZ, \gamma\gamma; ttH, H \rightarrow bb, \gamma\gamma, WW; WH, H \rightarrow \gamma\gamma$ Heather Logan (Carleton U.)LHC PhenomenologyPhysics In Collision 2011

Low-mass range most interesting for extracting Higgs couplings. - Ratios of rates give ratios of partial widths.

- Add theory assumption: $hWW, hZZ \leq SM \Rightarrow$ fit Higgs coups.

[L] 200 fb⁻¹ (except 300 fb⁻¹ for $ttH(\rightarrow bb)$, $WH(\rightarrow bb)$). Zeppenfeld, hep-ph/0203123 [R] Dührssen, Heinemeyer, H.L., Rainwater, Weiglein & Zeppenfeld, hep-ph/0406323 Plus input from Tevatron at low end of mass range?

Heather Logan (Carleton U.)

LHC Phenomenology

Measure tensor structure of HVV coupling in VBF:

Most general *HVV* vertex $T^{\mu\nu}(q_1, q_2)$

$$T^{\mu\nu} = a_1 g^{\mu\nu} + a_2 (q_1 \cdot q_2 g^{\mu\nu} - q_1^{\nu} q_2^{\mu}) + a_3 \varepsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}$$

The $a_i = a_i(q_1, q_2)$ are scalar form factors

Physical interpretation of terms:

SM Higgs $\mathcal{L}_I \sim H V_\mu V^\mu \longrightarrow a_1$

loop induced couplings for neutral scalar

CP even
$$\mathcal{L}_{eff} \sim HV_{\mu\nu}V^{\mu\nu} \longrightarrow a_2$$

CP odd $\mathcal{L}_{eff} \sim HV_{\mu\nu}\tilde{V}^{\mu\nu} \longrightarrow a_3$

Must distinguish a_1 , a_2 , a_3 experimentally

Slide from D. Zeppenfeld, plenary talk at SUSY'06 conference

Heather Logan (Carleton U.) LHC Phenomenology

HVV vertex structure gives different distributions in jj azimuthal angle $\Delta \phi$:

Figy, Hankele, Klämke, & Zeppenfeld, hep-ph/0609075; plot for $M_H = 120 \text{ GeV}$

 $HV^{\mu}V_{\mu}$ structure is "smoking gun" for Higgs mechanism EWSB. Check for CP violation and/or loop-induced $HV^{\mu\nu}V_{\mu\nu}$ structure. Can also use $H \rightarrow ZZ, WW$ lepton distributions.

Heather Logan (Carleton U.) LHC Phenomenology Physics In Collision 2011

15

Why expect more than just SM Higgs: The Hierarchy Problem

The Higgs mass-squared parameter μ^2 gets quantum corrections that depend quadratically on the high-scale cutoff of the theory.

Calculate radiative corrections from, e.g., a top quark loop. $\mu^2 = \mu_0^2 + \Delta \mu^2$

For internal momentum p, large compared to m_t and external h momentum:

Diagram =
$$\int \frac{d^4 p}{(2\pi)^4} (-) N_c \operatorname{Tr} \left[i\lambda_t \frac{i}{p} i\lambda_t \frac{i}{p} \right]$$
$$= -N_c \lambda_t^2 \int \frac{d^4 p}{(2\pi)^4} \operatorname{Tr} \left[\frac{1}{p^2} \right]$$
$$\operatorname{Tr} [1] = 4$$
$$= -\frac{4N_c \lambda_t^2}{(2\pi)^4} \int \frac{d^4 p}{p^2}$$

Momentum cutoff Λ : Integral diverges like Λ^2 .

Heather Logan (Carleton U.) LHC Phenomenology

Full 1-loop calculation gives

$$\Delta \mu^2 = \frac{N_c \lambda_t^2}{16\pi^2} \left[-2\Lambda^2 + 6m_t^2 \ln(\Lambda/m_t) + \cdots \right]$$

We measure $\mu^2 \sim -\mathcal{O}(M_{\text{EW}}^2) \sim -(100 \text{ GeV})^2 = -10^4 \text{ GeV}^2$. Nature sets the bare parameter μ_0^2 at the cutoff scale Λ . If $\Lambda = M_{\text{Pl}} = \frac{1}{\sqrt{8\pi G_N}} \sim 10^{18}$ GeV, then $\Delta \mu^2 \sim -10^{35}$ GeV²!

- Not an inconsistency in the theory.

Renormalizable: absorb the divergence into the bare parameter μ_0^2 .

- But it is an implausibly huge top-down coincidence that μ_0^2 and $\Delta \mu^2$ cancel to 31 decimal places! Looks horribly fine-tuned. and not just at one loop – must cancel two-, three-, four-, ... loop contributions

Want $|\Delta \mu^2| \sim (100 \text{ GeV})^2 \Rightarrow \Lambda \sim 1 \text{ TeV}.$ Expect New Physics that solves hierarchy problem at TeV scale!

Heather Logan (Carleton U.) LHC Phenomenology

Aside: Can the SM be valid all the way to the Planck scale?

Hambye & Riesselmann, hep-ph/9708416

SM Higgs sector is perturbative and stable (but terribly fine-tuned) all the way to the Planck scale for $M_H \simeq 134-180$ GeV. \exists window for $\sim 134-145$ GeV. For a nice review see Quigg, arXiv:0905.3187 Smaller top mass \Rightarrow lower bound decreases a little.

Heather Logan (Carleton U.) LHC Phenomenology Physics In Collision 2011

Two main classes of solutions to the hierarchy problem:

1) Supersymmetry

SUSY relates μ^2 to a fermion mass, which only runs logarithmically. Guarantees cancellation between SM loop diagrams and SUSY loop diagrams.

2) Composite Higgs

Higgs is some kind of bound state ("meson") of fundamental fermions, held together by a new force that gets strong at the TeV scale. Above a TeV there are no fundamental scalars, so no hierarchy problem.

[Includes extra-dimension / RS models by AdS/CFT duality.]

Heather Logan (Carleton U.) LHC Phenomenology Physics In Collision 2011

Supersymmetry

SUSY signals depends hugely on the SUSY mass spectrum: controls cascade decays

 \tilde{q}

Generic features:

- Jets + MET: strong squark and/or gluino production, cascade decays to invisible LSP.

- Leptons + MET: electroweak production of sleptons, gauginos: typically lighter than squarks/gluino due to renormalizationgroup running.

- 3rd generation + MET: renormalization-group running tends to drive top, bottom squarks lighter than others.

- Photons + MET: SUSY-breaking at an intermediate scale \Rightarrow gravitino is LSP, cascade decays to NLSP (bino).

General features of the SUSY mass spectrum

Martin, hep-ph/9709356

- Squarks start with common mass at high scale to avoid flavour problems

- Run down using RGEs \Rightarrow coloured particles heavier

- Large Yukawa coupling $(\tilde{t}; \tilde{b}, \tilde{\tau})$ pulls the mass down

- Left-right mixing large when Yukawa is large \Rightarrow mass splitting

- Heavier stops pull up the h^0 mass, but too-heavy stops reintroduce finetuning. 1 TeV stops are nice; 2 TeV I think are a bit stretched.

- Gluino mass is an independent parameter from squark masses

Gluino:Wino:Bino mass ratios fixed
by SUSY-breaking mechanism.
* mSUGRA, GMSB: 7 : 2 : 1

* AMSB: 8.3 : 1 : 2.8

Heather Logan (Carleton U.)

LHC Phenomenology

Supersymmetry definitely predicts a Higgs boson.

- h^0 : tends to be SM-like
- H^0, A^0, H^{\pm} : tend to be degenerate; decays depend on tan β

MSSM with top squarks below 1 TeV requires $M_h \lesssim 135$ GeV.

Carena & Haber, hep-ph/0208209

Heather Logan (Carleton U.) LHC Phenomenology

MSSM light-Higgs discovery can be tricky due to mixing and modification of loop-induced couplings by SUSY particles.

M. Carena, talk at Pheno 2011

For a large region of parameter space suppression of the $\gamma\gamma$ mode at the LHC

Suppression still sizable for m_A as large as 500 GeV

Heather Logan (Carleton U.)

LHC Phenomenology

MSSM

M. Carena, talk at Pheno 2011

LHC reach for the MSSM SM-like Higgs

Heather Logan (Carleton U.) LHC Phenomenology

MSSM Higgses: $\tau\tau$ resonance search (from $A^0/H^0/h^0$)

ATLAS-CONF-2011-132 (Lepton-Photon 2011)

CMS-PAS-HIG-11-020 (yesterday!)

Most of "difficult" light- A^0 region is already excluded.

Heather Logan (Carleton U.)

LHC Phenomenology

Is SUSY compatible with a Higgs above 135 GeV?

Yes, but it requires modifications. Options:

- "Hard" or very-low-scale SUSY breaking
- NMSSM (coupling λSH_uH_d) with large $\lambda \Rightarrow$ Landau pole \Rightarrow Supersymmetric "Fat Higgs" model and variants: Higgs ~ 200-450 GeV. (Still viable with mixing, new decay modes)

Harnik, Kribs, Larson, Murayama, hep-ph/0311349

- Make the top squarks heavier (reintroduces fine-tuning)

Heather Logan (Carleton U.)

LHC Phenomenology

Supersplit Supersymmetry^{*} predicts $128 \pm 2 - 141 \pm 2$ GeV Fox, Kaplan, Katz, Poppitz, Sanz, Schmaltz, Schwartz & Weiner, hep-ph/0503249

Hall & Nomura, JHEP 1003, 076 (2010) Plot: $m_t = 173.1$ GeV, $\widetilde{m} = 10^{14}$ GeV; uncert. from Δm_t , $\Delta \alpha_s$.

*more than just the best April Fool's joke in particle physics!

Heather Logan (Carleton U.)

LHC Phenomenology

Same as high-cutoff SM with stable, perturbative Higgs potential; GUT boundary condition fixes Higgs quartic at 10^{14-16} GeV.

Landau Pole:

Higgs self-coupling too large; blows up at scale Λ

Vacuum Instability:

Higgs self-coupling too small compared to top Yukawa; runs negative at scale Λ

Hambye & Riesselmann, hep-ph/9708416 \exists window for $\sim 134-145$ GeV.

Compare Supersplit SUSY: ~128–141 GeV Lower edge of "window" depends sensitively on top mass.

Heather Logan (Carleton U.) LHC Phenomenology

Less extreme: Split Supersymmetry

Preserves gauge coupling unification, dark matter candidate; less fine-tuned. Gauginos at TeV scale pull up Higgs mass compared to Supersplit

Giudice & Romanino, Nucl. Phys. B699, 65 (2004) Gluino signatures are key: can have displaced vertices, CHAMPs. New study: Alves, Izaguirre & Wacker, arXiv:1108.3390

Heather Logan (Carleton U.) LHC Phenomenology

Composite Models

Compositeness models trace EWSB to some new strong dynamics at or above the TeV scale.

Three broad classes of possibilities:

Technicolor (or Higgsless models)

- No Higgs state per se

- Goldstone bosons eaten by W, Z are bound states ("pions") of strongly-coupled dynamics

Composite-Higgs models

- Genuine Higgs (or Higgs-like) particle exists: bound state of strongly-coupled theory

Little Higgs models

- Higgs kept light by an extra layer of global symmetries; allows strong-coupling scale to be pushed higher

- Minimal extra matter content (top-partner, W', Z', ...) near TeV scale

Heather Logan (Carleton U.)LHC PhenomenologyPhysics In Collision 2011

Technicolor

Strongly coupled theory: hard to calculate reliably Original analyses used QCD measurements \Rightarrow too large effect on precision EW. Technicolor can't be just like QCD.

New understanding:

- Better techniques for strongly-coupled gauge theories
- AdS/CFT correspondence: calculate in 5-dim "dual" theory

"Deconstruct" the 5-dim theory to 4-dim for phenomenologicallyuseful "Higgsless" model:

- Expect techni-rho spin-1 resonances (W', Z') below TeV scale Exchange of these unitarizes WW scattering up to ~1.5 TeV resonance decays into WW, WZ
- Can have physical techni-pions depending on global symmetries

Hard to make top quark heavy enough \Rightarrow top-color, etc.

- Expect top-Higgs, top-pions

Implications from LHC Higgs searches

Heather Logan (Carleton U.)LHC PhenomenologyPhysics In Collision 2011

Top-Higgs

Dedicated (composite) scalar doublet to generate most of top quark mass: common add-on for models of dynamical EWSB.

- topcolor-assisted technicolor
- deconstructed "top triangle" 3-site Moose

Top-Higgs doublet has vev $f = v_{SM} \sin \omega$

(Strong dynamics responsible for most of EWSB: $v_{SM} \cos \omega$)

Top-Higgs particle H_t couples only to $t\bar{t}$, WW, ZZ at tree level

- WW , ZZ couplings suppressed $\sim \sin\omega$
- $t\bar{t}$ coupling enhanced $\sim 1/\sin\omega$
- $gg \rightarrow H_t$ enhanced ~ $1/\sin^2 \omega$: LHC production enhanced!

Typical mass is $M_{H_t} \lesssim 2m_t$ for dynamical top mass generation in topcolor-assisted technicolor (TC2)

LHC Higgs search: relevant channels are $gg \rightarrow H_t \rightarrow WW, ZZ$

BR($H_t \rightarrow WW, ZZ$) is suppressed when decays to top-pions $(W^{\pm}\Pi_t^{\mp}, Z\Pi_t^0, \Pi_t\Pi_t)$ are kinematically accessible.

Top-pion mass constrained by exotic top decay limits: $t \to \Pi_t^+ b$.

Chivukula, Simmons, Coleppa, HEL, & Martin, arXiv:1108.4000 (updated with LP11 limits)Heather Logan (Carleton U.)LHC PhenomenologyPhysics In Collision 2011

Most of the interesting TC2 top-Higgs parameter space has been excluded this summer!

Chivukula, Simmons, Coleppa, HEL, & Martin, arXiv:1108.4000 (updated with LP11 limits)

Other options: Top seesaw \Rightarrow much heavier top-Higgs: still viable

Heather Logan (Carleton U.) LHC Phenomenology

Composite Higgs: model based on Randall-Sundrum

Has a physical Higgs state Higgs lives on or near IR brane: interpreted as composite

Top quark near IR brane: need overlap with Higgs to pick up large enough mass

KK excitations of Z, W, gluon

- Enhanced coupling to right-handed top
- Z', G' decay preferentially to $t\overline{t}$: TeV resonances in top pairs

KK excitations of quarks

- Single production via qW, qZ fusion Cross section is larger than for pair production for heavy masses
- Decays back to qW, qZ

Heather Logan (Carleton U.) LHC Phenomenology Physics In Collision 2011

Electroweak constraints

Generic models of New Physics tend to be tightly constrained by electroweak precision data.

- New particles contribute to measured SM processes, e.g., $f\bar{f} \rightarrow f\bar{f}$.
- New features in SU(2) and top sectors constrained by S, T and R_b .

EW precision constraints generically push Λ_{eff}^{NP} well above "natural" TeV scale, especially for strongly coupled new physics: called the "little hierarchy" problem.

Tricks:

- Little Higgs models: Use global symmetries to kill off 1-loop correction to Higgs mass: push strong dynamics up to ~10 TeV. - $\Delta\mu^2 \sim (g^2/16\pi^2)^2 \Lambda^2$ instead of $(g^2/16\pi^2) \Lambda^2$

- Little Higgs with T-parity: make extra TeV-scale states Tparity odd: produced only in pairs, exchanged only in loops. Escape EW precision constraints; get dark matter candidate.

Heather Logan (Carleton U.)LHC PhenomenologyPhysics In Collision 2011

Little Higgs models

Need "partners" at TeV scale for top, W, Z, Higgs to cancel one-loop μ^2 corrections.

Azuelos et al, hep-ph/0402037

Heather Logan (Carleton U.)

LHC Phenomenology

Gauge partners W_H , Z_H (and sometimes B_H):

- Come from SU(2) \times SU(2) \rightarrow SU(2)_L breaking
- Couplings to left-handed fermions like SM $W^{\pm,3}_{\mu}$, with strength $g\cot heta$
- Extra decays $Z_H \rightarrow HZ, WW$; $W_H \rightarrow HW, ZW$

Azuelos et al, hep-ph/0402037

Heather Logan (Carleton U.)

LHC Phenomenology

 $W' \rightarrow \ell \nu$ search:

Probe production coupling strength, decay BRs.

ATLAS, arXiv:1108.1316 [hep-ex]

Heather Logan (Carleton U.)

LHC Phenomenology

Little Higgs with T-parity

Looser electroweak constraints \Rightarrow new particles can be lighter - less fine-tuned

T-parity \Rightarrow T-odd particles pair-produced, stable "LTP"

- $T \rightarrow t$ + invisible

- gauge partner pair signals reminiscent of SUSY

Higgs mass range preferred by precision EW + fine-tuning can be rather heavy.

- very model-dependent statement
- major implications from Higgs search
- needs to be systematically explored

Littlest Higgs with T-parity, Hubisz, Meade, Noble, Perelstein, hep-ph/0506042

Heather Logan (Carleton U.)

LHC Phenomenology

Summary and outlook

Early LHC data already having impacts on huge range of models. - Major task for phenomenologists to incorporate the new LHC exclusions into model "landscape" (fine-tuning, etc.)

None of the major classes of new-physics models is "dead yet" - but some are starting to be tightly constrained (e.g., TC2).

Outcome of Higgs search in 5–10 fb⁻¹ will be very important.

We eagerly await experimental input on the dynamics of electroweak symmetry breaking!

Backup slides

Heather Logan (Carleton U.) LHC Phenomenology

MSSM Higgs search:

Low-mass Tevatron and LHC channels are complementary.

M. Casarsa, talk at PLHC 2011

CMS-PAS-HIG-11-022 (LP2011)

1) Mass spectrum

Paige, hep-ph/0211017

- Exact kinematic relations: "solve" individual decay chains Kawagoe, Nojiri & Polesello, PRD71, 035008 (2005), Cheng et al., PRL 100, 252001 (2008) - MT2 ("stransverse mass"), kinks, cusps, $\sqrt{\hat{s}}_{min}$, etc.

Recent review: Barr et al., arXiv:1105.2977

Heather Logan (Carleton U.) LHC Phenomenology

2) Spin of superpartners

Universal Extra Dimensions can mimic SUSY Stable "LKP" \rightarrow jets + missing energy signatures.

Heather Logan (Carleton U.) LHC Phenomenology

2) Spin of superpartners

Need to be clever to find distinguishing observables! Kinematic distributions, etc.

Datta, Kong & Matchev, hep-ph/0509246

Heather Logan (Carleton U.) LHC Phenomenology

3) Coupling relationsgauge couplings ↔ gaugino Yukawa couplings

Freitas & Skands, hep-ph/0606121

Requires ILC input for squark decay BRs.

Heather Logan (Carleton U.) LHC Phenomenology Phy

MSSM

M. Carena, talk at Pheno 2011

LHC reach for the MSSM SM-like Higgs

Heather Logan (Carleton U.) LHC Phenomenology

MSSM Higgses: $\tau\tau$ resonance search (from $A^0/H^0/h^0$)

ATLAS-CONF-2011-132 (Lepton-Photon 2011) CMS-PAS-HIG-11-009 (EPS-HEP 2011)

Most of "difficult" light- A^0 region is already excluded.

Heather Logan (Carleton U.) LHC Phenomenology

MSSM

3 sigma evidence of the SUSY Higgs responsible for EWSB

Heather Logan (Carleton U.)

LHC Phenomenology

 $Z' \rightarrow \ell \ell$ search: 5-event discovery reach in dimuons Godfrey & Martin, 2011

