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(a) is a quick “comprehension question”, designed to check that the material is understood.
(b) is a “calculational question” meant to be marked.

1. (Lecture 1, Monday July 17)

(a) Convince yourself that the numbers of degrees of freedom match between the SM particles
and their SUSY partners.

(b) Show that the quadratically divergent part of the h0 mass correction from the top quark
loop is cancelled by the contribution from the top squark loops.

The Feynman rules for the vertices are:

h0tt̄ : ightt

h0h0t̃it̃i : iλhht̃i t̃i
,

where the relevant couplings are:
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[The ellipsis in λhht̃L t̃L
and λhht̃R t̃R

represent electroweak terms (not proportional to
mt) that are cancelled among other sets of loops; you may neglect them.] You will
need to rewrite the four-scalar couplings in terms of the top squark mass eigenstates,
t̃1 = cos θtt̃L +sin θtt̃R, t̃2 = − sin θtt̃L +cos θtt̃R. To show that the cancellation happens,
you don’t need to actually compute the loop integrals; it’s enough to neglect all masses
and the external momentum and write the loop integrals in the (divergent) form

∫
d4p/p2,

where p is the momentum running around the loop.



2. (Lecture 2, Monday July 17)

(a) The renormalization group equation for the soft-SUSY-breaking top squark mass-squared
parameter is
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where t = ln(Q/Q0). Convince yourself that the positive terms (Xt+Xb) in this equation
cause m2

Q3
to decrease as it’s run down to lower energies, and that conversely the negative

terms cause m2
Q3

to increase as it’s run down.

(b) Consider slepton pair production at the ILC:

e+e− → ˜̀
R
˜̀
R → `+Ñ1`

−Ñ1.

Use conservation of relativistic momentum and energy to derive the formula for the
energy of one of the leptons in the centre-of-mass frame (set m` to zero):
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where cos θ∗ is the angle, in the ˜̀ rest frame, between the direction of the ˜̀motion and
the emission angle of its daughter lepton. This formula gives the maximum [cos θ∗ = 1]
and minimum [cos θ∗ = −1] lepton energies (endpoints) in terms of the SUSY particle
masses.



3. (Lecture 3, Wednesday July 19)

(a) Count up the number of degrees of freedom of the “SM partners” in the first KK level
and compare it to the number of degrees of freedom of the corresponding SUSY partners.
[Hint: The numbers are different.]

(b) Consider pair production of massive fermions f+f− and massive scalars φ+φ− in e+e−

annihilation via photon exchange (neglect Z exchange for simplicity and assume that f
and φ are colourless). Show that the total cross section for fermion pair production is
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and that the total cross section for scalar pair production is
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where β = |~p|/E = (1 − 4m2/s)1/2 is the speed of either of the final-state particles in
the centre-of-mass frame, m is the mass of the final-state fermion or scalar, and s is the
square of the centre-of-mass energy. The important thing is to get the β dependence
of the cross section near threshold, where β is small; this shows how quickly the cross
section “turns on” when you cross the threshold. Notice also that far above threshold,
when β ' 1, the cross section for scalar pairs is four times smaller than the cross section
for fermion pairs.

The coupling of the scalar to the photon is described by the Lagrangian

L = −ie
[
φ†(∂µφ)− (∂µφ

†)φ
]
Aµ,

which leads to the Feynman rule

70

Higgs–Vector boson couplings

hypercharge zero). Finally in section B.3 we list the formulas for the couplings of Higgs
mass eigenstates in terms of the couplings of electroweak eigenstates.

The couplings are defined as follows, with all particles incoming to the vertex:
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The Higgs–Higgs–Vector (HHV) couplings come from the terms in the lagrangian
involving two Higgs fields, one vector field and one partial derivative. The momentum
dependence of the vertex comes from the partial derivative. Because of the momentum
structure of the vertex, the coupling gHHV is antisymmetric under interchange of the two
Higgs fields.

The Higgs–Higgs–Vector–Vector (HHVV) couplings come from the terms in the
lagrangian involving two Higgs fields and two vector fields.

The Higgs–Vector–Vector (HVV) couplings come from the terms in the lagrangian
involving one Higgs field, one Higgs vev, and two vector fields. Therefore if a multiplet has
zero vev, its members will have no HVV couplings. The HVV couplings can be immediately
obtained from the HHVV couplings which involve the CP-even neutral Higgs boson φ0,r.
This is done by replacing φ0,r with φ0,r + v in the lagrangian and keeping terms with one
Higgs field and one vev. In order to conserve electric charge, the HVV couplings can only
involve Higgs bosons of charge +2, +1, 0, -1, or -2.

We note also that in the electroweak basis, the HHV and HHVV couplings can
only involve two Higgs bosons from the same multiplet.

with coupling gH1H2V = gφ+φ−γ = −e (all particles and momenta incoming).


