Constraining electroweak breaking from exotic scalars using LHC diboson searches

Heather Logan
Carleton University

Particle Physics Group seminar
Université de Montréal, February 16, 2016

```
H.E.L. & V. Rentala, 1502.01275; M.J. Harris & H.E.L., in progress
K. Hartling, K. Kumar, & H.E.L., 1404.2640, 1410.5538, 1412.7387
```


Outline

Introduction \& motivation

The models

Phenomenology \& LHC search prospects

Summary \& outlook

SM success: triumph of the gauge principle

QED

Precision electroweak
Perturbative QCD / Lattice QCD

CKM picture for flavor physics

SM challenge: mystery of the vacuum

Origin of W, Z masses

Origin of quark \& lepton masses, mixing, CP violation

Origin of neutrino masses, mixing

Dark energy / Inflation

Hierarchy

The Standard Model: EWSB from a scalar SU(2) $)_{L}$ doublet

 A one-line theory:$$
\mathcal{L}_{\text {Higgs }}=\left|\mathcal{D}_{\mu} \Phi\right|^{2}-\left[-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}\right]-\left[y_{f} \bar{f}_{R} \Phi^{\dagger} F_{L}+\text { h.c. }\right]
$$

Most general, renormalizable, gauge-invariant theory involving a single spinzero (scalar) field with isospin $1 / 2$, hypercharge 1 .
$-\mu^{2}$ term: vacuum condensate! EW symmetry spontaneously broken; Goldstone bosons gauged away, 1 physical particle h.

$$
\Phi=\binom{G^{+}}{\left(v+h+i G^{0}\right) / \sqrt{2}}
$$

Mass and vacuum expectation value of h are fixed by minimizing the Higgs potential:

$$
v^{2}=\mu^{2} / \lambda \quad M_{h}^{2}=2 \lambda v^{2}=2 \mu^{2}
$$

The Standard Model: EWSB from a scalar $\operatorname{SU}(2)_{L}$ doublet

SM Higgs couplings to SM particles are fixed by the mass-generation mechanism.
W and Z :

$$
g_{Z} \equiv g / \cos \theta_{W}=\sqrt{g^{2}+g^{\prime 2}}, v=246 \mathrm{GeV}
$$

$$
\begin{array}{lc}
\mathcal{L}=\left|\mathcal{D}_{\mu} \Phi\right|^{2} \rightarrow & \left(g^{2} / 4\right)(h+v)^{2} W^{+} W^{-}+\left(g_{Z}^{2} / 8\right)(h+v)^{2} Z Z \\
M_{W}^{2}=g^{2} v^{2} / 4 & h W W: i\left(g^{2} v / 2\right) g^{\mu \nu} \\
M_{Z}^{2}=g_{Z}^{2} v^{2} / 4 & h Z Z: i\left(g_{Z}^{2} v / 2\right) g^{\mu \nu}
\end{array}
$$

Fermions:

$$
\begin{aligned}
& \mathcal{L}=-y_{f} \bar{f}_{R} \Phi^{\dagger} F_{L}+\cdots \rightarrow-\left(y_{f} / \sqrt{2}\right)(h+v) \bar{f}_{R} f_{L}+\text { h.c. } \\
& m_{f}=y_{f} v / \sqrt{2} \quad h \bar{f} f: i m_{f} / v
\end{aligned}
$$

Gluon pairs and photon pairs:
induced at 1-loop by fermions, W-boson.

Could some of the vacuum condensate come from a higher-isospin scalar field?

Part of vacuum condensate from a higher-isospin scalar field?

Fermion masses can arise only from $\mathrm{SU}(2)_{L}$ doublet(s)

$$
\begin{aligned}
& \mathcal{L}=-y_{f} \bar{f}_{R} \Phi^{\dagger} F_{L}+\cdots \rightarrow-\left(y_{f} / \sqrt{2}\right)\left(\phi^{0, r}+v_{\phi}\right) \bar{f}_{R} f_{L}+\text { h.c. } \\
& m_{f}=y_{f} v_{\phi} / \sqrt{2} \quad \phi^{0, r} \bar{f} f: i y_{f} / \sqrt{2}=i m_{f} / v_{\phi}
\end{aligned}
$$

F_{L} is doublet, f_{R} is singlet, need Φ doublet for gauge invariance

Top quark Yukawa perturbativity \Rightarrow lower bound on doublet vev: define $\cos \theta_{H} \equiv v_{\phi} / v_{\mathrm{SM}}$, then $\tan \theta_{H}<10 / 3\left(\right.$ or $\left.\cos \theta_{H}>0.287\right)$

Scalar couplings to fermions come from their doublet content

$$
\Phi=\binom{\phi^{+}}{\left(v_{\phi}+\phi^{0, r}+i \phi^{0, i}\right) / \sqrt{2}}
$$

With other scalar fields in play, Goldstone bosons are linear combinations of different fields.

Part of vacuum condensate from a higher-isospin scalar field?

W and Z masses arise from anything carrying $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$

$$
\begin{aligned}
M_{W}^{2} & =\frac{g^{2}}{4} \sum_{k} 2\left[T_{k}\left(T_{k}+1\right)-\frac{Y_{k}^{2}}{4}\right] v_{k}^{2}=\frac{g^{2}}{4} v_{\mathrm{SM}}^{2} \\
M_{Z}^{2} & =\frac{g^{2}}{4 \cos ^{2} \theta_{W}} \sum_{k} Y_{k}^{2} v_{k}^{2}=\frac{g^{2}}{4 \cos ^{2} \theta_{W}} v_{\mathrm{SM}}^{2}
\end{aligned}
$$

($Q=T^{3}+Y / 2$, vevs defined as $\left\langle\phi_{k}^{0}\right\rangle=v_{k} / \sqrt{2}$ for complex reps and $\left\langle\phi_{k}^{0}\right\rangle=v_{k}$ for real reps)
Used $Q=0$ for component carrying the vev to simplify expressions
Top Yukawa perturbativity $\rightarrow\left(v_{\phi} / v_{\text {SM }}\right)^{2}>(0.287)^{2}=0.082$
\Rightarrow At least 8.2% of $M_{W, Z}^{2}$ comes from doublet.
Lots of room for higher-isospin scalar contributions!

Can we constrain this exotic possibility?

Problem with higher-isospin scalar multiplets

$\rho \equiv$ ratio of strengths of charged and neutral weak currents

$$
\rho=\frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}=\frac{\sum_{k} 2\left[T_{k}\left(T_{k}+1\right)-Y_{k}^{2} / 4\right] v_{k}^{2}}{\sum_{k} Y_{k}^{2} v_{k}^{2}}
$$

($Q=T^{3}+Y / 2$, vevs defined as $\left\langle\phi_{k}^{0}\right\rangle=v_{k} / \sqrt{2}$ for complex reps and $\left\langle\phi_{k}^{0}\right\rangle=v_{k}$ for real reps)
PDG 2014: $\rho=1.00040 \pm 0.00024$

We can still have higher-isospin scalars with non-negligible vevs; only two approaches using symmetry: (could also tune ρ by hand, but icky)

1) Impose global $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$ symmetry on scalar sector \Longrightarrow breaks to custodial $\operatorname{SU}(2)$ upon EWSB; $\rho=1$ at tree level

Georgi \& Machacek 1985; Chanowitz \& Golden 1985
2) $\rho=1$ "by accident" for $(T, Y)=\left(\frac{1}{2}, 1\right)$ doublet; $(3,4)$ septet

Septet: Hisano \& Tsumura, 1301.6455; Kanemura, Kikuchi \& Yagyu, 1301.7303
Larger solutions forbidden by perturbative unitarity of weak charges.

Both have theoretical "issues":

1) Global $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$ is broken by gauging hypercharge.

Gunion, Vega \& Wudka 1991
Special relations among param's of full gauge-invariant scalar potential can only hold at one energy scale: violated by running due to hypercharge. Garcia-Pepin, Gori, Quiros, Vega, Vega-Morales, Yu 2014

Need the UV completion to be nearby!
2) Can't give the septet a vev through spontaneous breaking without generating a physical massless Goldstone boson.

Have to couple it to the SM doublet through a dimension-7 $X \Phi^{*} \Phi^{5}$ term Hisano \& Tsumura 2013

Need the UV completion to be nearby!

Need UV completion to solve the hierarchy problem anyway!

Heather Logan (Carleton U.) Constraining exotic EWSB with VV

Consider $2 \rightarrow 2$ scattering amplitudes for $\phi \phi \rightarrow V_{T} V_{T}$: transverse $\mathrm{SU}(2)_{L}$ gauge bosons

- no growth with E^{2}; amplitude depends on weak charges \& number of ϕ 's

Consider $2 \rightarrow 2$ scattering amplitudes for $V_{T} V_{T} \rightarrow \phi \phi$: transverse $\operatorname{SU}(2)_{L}$ gauge bosons

- no growth with E^{2}; amplitude depends on weak charges \& number of ϕ 's

General result for complex scalar multiplet with $n=2 T+1$:

$$
a_{0}^{\max }=\frac{g^{2}}{16 \pi} \frac{\left(n^{2}-1\right) \sqrt{n}}{2 \sqrt{3}}
$$

- Real scalar multiplet: divide by $\sqrt{2}$ to account for smaller number of ϕ^{\prime} s
- More than one multiplet: add a_{0} 's in quadrature

Unitarity: require largest eigenvalue $a_{0}^{\max }$ satisfies $\left|\operatorname{Re} a_{0}\right|<1 / 2$:

- Complex multiplet $\Rightarrow T \leq 7 / 2$ (8-plet)
- Real multiplet $\Rightarrow T \leq 4$ (9-plet)
- Constraints tighter if more than one large multiplet is present (generally required in $\operatorname{SU}(2)_{L} \times S U(2)_{R}$-symmetric models)

Essentially a requirement that the weak charges not be too large.
Heather Logan (Carleton U.) Constraining exotic EWSB with VV UdeM Feb 2016

The models

1) Models with global $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$ symmetry:
a) Georgi-Machacek model
b) Generalizations to higher isospin
2) Model with a scalar septet

All these models share a key common feature:

$$
H^{ \pm \pm} \leftrightarrow W^{ \pm} W^{ \pm} \text {and } H^{ \pm} \leftrightarrow W^{ \pm} Z
$$

with couplings controlled by vev of higher-isospin scalar(s)

Generic experimental probe is diboson resonance search in VBF.

Theoretical origin of common feature:
Unitarization of $W W \rightarrow W W, W W \rightarrow Z Z$ scattering amplitudes

(a)

(b)

(c)

(d)

(e)

- SM: Higgs exchange cancels E^{2} / v^{2} term in amplitude.
-2 HDM $/$ SM + singlet: cancellation \rightarrow sum rule $\left(\kappa_{V}^{h}\right)^{2}+\left(\kappa_{V}^{H}\right)^{2}=1$
- Higher-isospin scalars: $\left(\kappa_{V}^{h}\right)^{2}+\left(\kappa_{V}^{H}\right)^{2}>1$, need $H^{ \pm \pm}$and $H^{ \pm}$ in new u-channel diagrams: couplings inter-related

Falkowski, Rychkov \& Urbano, 1202.1532 (see also Higgs Hunter's Guide)

SM Higgs bidoublet + two isospin-triplets in a bitriplet:

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Physical spectrum: Custodial symmetry fixes almost everything!

Bidoublet: $2 \times 2 \rightarrow 3+1$
Bitriplet: $3 \times 3 \rightarrow 5+3+1$

- Two custodial singlets mix $\rightarrow h^{0}, H^{0}$
- Two custodial triplets mix $\rightarrow\left(H_{3}^{+}, H_{3}^{0}, H_{3}^{-}\right)+$Goldstones
- Custodial fiveplet ($H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}$) unitarizes $V V \rightarrow V V$

SM Higgs bidoublet + two isospin-triplets in a bitriplet:

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Physical spectrum: Custodial symmetry fixes almost everything!

Bidoublet: $2 \times 2 \rightarrow 3+1$
Bitriplet: $3 \times 3 \rightarrow 5+3+1$

- Two custodial singlets mix $\rightarrow h^{0}, H^{0} m_{h}, m_{H} \quad \leftarrow$ (very similar
- Two custodial triplets mix $\rightarrow\left(H_{3}^{+}, H_{3}^{0}, H_{3}^{-}\right) m_{3} \quad \leftarrow$ to 2 HDM$)$
- Custodial fiveplet $\left(H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}\right) m_{5} \quad \leftarrow$ new!

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015

Replace the bitriplet with a bi-n-plet \Longrightarrow "GGMn"

Bidoublet: $2 \times 2 \rightarrow 3+1$
Bitriplet: $3 \times 3 \rightarrow 5+3+1$
Biquartet: $4 \times 4 \rightarrow 7+5+3+1$
Bipentet: $5 \times 5 \rightarrow 9+7+5+3+1$ Bisextet: $6 \times 6 \rightarrow 11+9+7+5+3+1$

Larger bi-n-plets forbidden by perturbative unitarity of weak charges!

- Two custodial singlets mix $\rightarrow h^{0}, H^{0}$
- Two custodial triplets mix $\rightarrow\left(H_{3}^{+}, H_{3}^{0}, H_{3}^{-}\right)+$Goldstones
- Custodial fiveplet $\left(H_{5}^{+}+, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}\right)$unitarizes $V V \rightarrow V V$
- Additional states

Phenomenology I: custodial singlets h^{0}, H^{0}

Vevs: $\langle\Phi\rangle=\left(v_{\phi} / \sqrt{2}\right) I_{2 \times 2},\left\langle X_{n}\right\rangle=v_{n} I_{n \times n} \Longrightarrow$ define $c_{H}=v_{\phi} / v$

$$
\text { Recall } c_{H}^{2}=\text { fraction of } M_{W, Z}^{2} \text { coming from doublet vev }
$$

Two custodial-singlet states are mixtures of $\phi^{0, r}$ and custodial singlet from higher-isospin scalars:

$$
h^{0}=c_{\alpha} \phi^{0, r}-s_{\alpha} H_{1}^{\prime 0}, \quad H^{0}=s_{\alpha} \phi^{0, r}+c_{\alpha} H_{1}^{\prime 0}
$$

Couplings to $W^{+} W^{-} / Z Z$ and $\bar{f} f$:

$$
\begin{aligned}
\kappa_{V}^{h}=c_{\alpha} c_{H}-\sqrt{A} s_{\alpha} s_{H} & \kappa_{f}^{h}=c_{\alpha} / c_{H} \\
\kappa_{V}^{H}=s_{\alpha} c_{H}+\sqrt{A} c_{\alpha} s_{H} & \kappa_{f}^{H}=s_{\alpha} / c_{H}
\end{aligned}
$$

Note that $\kappa_{V}^{h} \leq\left[1+(A-1) s_{H}^{2}\right]^{1 / 2}$, saturated when $\kappa_{V}^{H}=0$.
\sqrt{A} factor comes from the generators: $A=4 T(T+1) / 3$
$A_{\mathrm{GM}}=8 / 3, \quad A_{\mathrm{GGM} 4}=15 / 3, \quad A_{\mathrm{GGM} 5}=24 / 3, \quad A_{\mathrm{GGM} 6}=35 / 3$
(Septet model: $A_{7}=16$)

Large enhancements of κ_{V}^{h} possible for large s_{H} (up to about 3.3):

Impossible to have $\kappa_{V}^{h}, \kappa_{f}^{h}=1$ without $s_{H} \rightarrow 0$: High-precision measurements of Higgs couplings will constrain higher-isospin vacuum condensate.

$$
\begin{array}{rr}
\kappa_{V}^{h}=c_{\alpha} c_{H}-\sqrt{A} s_{\alpha} s_{H} & \kappa_{f}^{h}=c_{\alpha} / c_{H} \\
\kappa_{V}^{H}=s_{\alpha} c_{H}+\sqrt{A} c_{\alpha} s_{H} & \kappa_{f}^{H}=s_{\alpha} / c_{H}
\end{array}
$$

Phenomenology II: custodial triplet $H_{3}^{+}, H_{3}^{0}, H_{3}^{-}$

Couplings to fermions are the same as $H^{ \pm}, A^{0}$ in Type-I 2HDM:

$$
\begin{aligned}
H_{3}^{0} \bar{u} u: & \frac{m_{u}}{v} \tan \theta_{H} \gamma_{5},
\end{aligned} H_{3}^{0} \bar{d} d: \quad-\frac{m_{d}}{v} \tan \theta_{H} \gamma_{5},
$$

$\mathrm{ZH}_{3}^{+} \mathrm{H}_{3}^{-}$also the same as in 2HDM:
constraints from $b \rightarrow s \gamma, B_{s} \rightarrow \mu \mu, R_{b}$, etc translate directly.
Vector-phobic: no $H_{3} V V$ couplings at tree level.

Constraint from $b \rightarrow s \gamma$

H_{3}^{+}in the loop: measurement constrains m_{3} and $\sin \theta_{H}$ - Holds for all generalizations of Georgi-Machacek model

- Also constrains septet model, but not identical

Hartling, Kumar \& HEL, 1410.5538

Constraint from $b \rightarrow s \gamma$ in original Georgi-Machacek model:

Apply to original Georgi-Machacek model: $s_{H}^{2}<0.56$
Can constrain because high s_{H} at high m_{3} is theoretically inaccessible.
\Rightarrow at least 44% of $M_{W, Z}^{2}$ is due to doublet vev (Model-dependent bound)

Hartling, Kumar \& HEL, 1410.5538 (Light green points excluded by $b \rightarrow s \gamma$)
Heather Logan (Carleton U.) Constraining exotic EWSB with VV

Phenomenology III: custodial fiveplet $H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}$

Custodial-fiveplet comes only from higher-isospin scalars: no couplings to fermions!
$\mathrm{H}_{5} \mathrm{VV}$ couplings are nonzero: very different from 2HDM!

$$
\begin{aligned}
H_{5}^{0} W_{\mu}^{+} W_{\nu}^{-}: & -i \frac{2 M_{W}^{2}}{v_{\mathrm{SM}}} \frac{g_{5}}{\sqrt{6}} g_{\mu \nu}, \\
H_{5}^{0} Z_{\mu} Z_{\nu}: & i \frac{2 M_{Z}^{2}}{v_{\mathrm{SM}}} \sqrt{\frac{2}{3}} g_{5} g_{\mu \nu}, \\
H_{5}^{+} W_{\mu}^{-} Z_{\nu}: & -i \frac{2 M_{W} M_{Z}}{v_{\mathrm{SM}}} \frac{g_{5}}{\sqrt{2}} g_{\mu \nu}, \\
H_{5}^{++} W_{\mu}^{-} W_{\nu}^{-}: & i \frac{2 M_{W}^{2}}{v_{\mathrm{SM}}} g_{5} g_{\mu \nu},
\end{aligned}
$$

Coupling strength depends on the isospins of the scalars involved:
$g_{5}^{\mathrm{GM}}=\sqrt{2} s_{H}, \quad g_{5}^{\mathrm{GGM} 4}=\sqrt{\frac{24}{5}} s_{H}, \quad g_{5}^{\mathrm{GGM} 5}=\sqrt{\frac{42}{5}} s_{H}, \quad g_{5}^{\mathrm{GGM} 6}=\frac{8}{\sqrt{5}} s_{H}$
Direct probe of higher-isospin vacuum condensate!
Heather Logan (Carleton U.)
Constraining exotic EWSB with VV

Phenomenology III: custodial fiveplet $H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}$

Custodial-fiveplet comes only from higher-isospin scalars: no couplings to fermions!
$H_{5} \mathrm{VV}$ couplings are nonzero: very different from 2 HDM !

$$
\begin{aligned}
H_{5}^{0} W_{\mu}^{+} W_{\nu}^{-}: & -i \frac{2 M_{W}^{2}}{v_{\mathrm{SM}}} \frac{g_{5}}{\sqrt{6}} g_{\mu \nu}, \\
H_{5}^{0} Z_{\mu} Z_{\nu}: & i \frac{2 M_{Z}^{2}}{v_{\mathrm{SM}}} \sqrt{\frac{2}{3}} g_{5} g_{\mu \nu} \\
H_{5}^{+} W_{\mu}^{-} Z_{\nu}: & -i \frac{2 M_{W} M_{Z}}{v_{\mathrm{SM}}} \frac{g_{5}}{\sqrt{2}} g_{\mu \nu} \\
H_{5}^{++} W_{\mu}^{-} W_{\nu}^{-}: & i \frac{2 M_{W}^{2}}{v_{\mathrm{SM}}} g_{5} g_{\mu \nu}
\end{aligned}
$$

But g_{5} is also fixed by $V V \rightarrow V V$ unitarization sum rule:

$$
\left(\kappa_{V}^{h}\right)^{2}+\left(\kappa_{V}^{H}\right)^{2}-\frac{5}{6} g_{5}^{2}=1
$$

Falkowski, Rychkov \& Urbano, 1202.1532 (see also Higgs Hunter's Guide) (relies on custodial symmetry in scalar sector; same in all GGM models)

Constraint from VBF $H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm} \rightarrow$ same-sign dileptons

Theorist recasting of ATLAS $W^{ \pm} W^{ \pm} j j$ cross-section measurement ATLAS, 1405.6241
\Rightarrow put limit on VBF $\rightarrow H_{5}^{ \pm \pm}$cross section, directly constrain g_{5}

Chiang, Kanemura \& Yagyu, 1407.5053

What about higher H_{5} masses?

Perturbative unitarity of finite part of $V V \rightarrow V V \Rightarrow$ upper bound on H_{5} mass as function of s_{H}, just like SM Higgs mass bound!

- SM: $m_{h \mathrm{SM}}^{2}<16 \pi v_{\mathrm{SM}}^{2} / 5 \simeq(780 \mathrm{GeV})^{2}$ Lee, Quigg \& Thacker 1977
- $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$-symmetric models:

$$
\left[\left(\kappa_{V}^{h}\right)^{2} m_{h}^{2}+\left(\kappa_{V}^{H}\right)^{2} m_{H}^{2}+\frac{2}{3} g_{5}^{2} m_{5}^{2}\right]<\frac{16 \pi v_{\mathrm{SM}}^{2}}{5}
$$

Combine with $V V \rightarrow V V$ unitarization sum rule:

$$
\left(\kappa_{V}^{h}\right)^{2}+\left(\kappa_{V}^{H}\right)^{2}-\frac{5}{6} g_{5}^{2}=1
$$

Constraint is loosest (most conservative) when $\kappa_{V}^{H} \rightarrow 0$:

$$
g_{5}^{2}<\frac{6}{5} \frac{\left(16 \pi v_{S M}^{2}-5 m_{h}^{2}\right)}{\left(4 m_{5}^{2}+5 m_{h}^{2}\right)} \simeq \frac{24 \pi v_{S M}^{2}}{5 m_{5}^{2}}
$$

Complementary ranges of m_{5} !
HEL \& Rentala, 1502.01275

$$
g_{5}^{\mathrm{GM}}=\sqrt{2} s_{H}, \quad g_{5}^{\mathrm{GGM} 4}=\sqrt{\frac{24}{5}} s_{H}, \quad g_{5}^{\mathrm{GGM} 5}=\sqrt{\frac{42}{5}} s_{H}, \quad g_{5}^{\mathrm{GGM} 6}=\frac{8}{\sqrt{5}} s_{H}
$$

Note: $s_{H}^{2} \equiv$ exotic fraction of $M_{W, Z}^{2}$ is least constrained in original Georgi-Machacek model!
Heather Logan (Carleton U.) Constraining exotic EWSB with VV UdeM Feb 2016

All the $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$ models are the same when expressed in terms of g_{5} : use sum rule, $\left(\kappa_{V}^{h}\right)^{2} \leq 1+5 g_{5}^{2} / 6$

$\Rightarrow \kappa_{V}^{h} \lesssim 1.57$ for $m_{5}>100 \mathrm{GeV}$
HEL \& Rentala, 1502.01275
Heather Logan (Carleton U.) Constraining exotic EWSB with VV

Constraint from VBF $H_{5}^{ \pm} \rightarrow W^{ \pm} Z \rightarrow q q \ell^{+} \ell^{-}$

Dedicated ATLAS search for singly-charged resonance in VBF, using Georgi-Machacek model as benchmark

ATLAS 1503.04233
$H_{5}^{ \pm} \rightarrow W^{ \pm} Z$ exclusion not quite as strong as $H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$, but more data is coming.

after Chiang, Kanemura \& Yagyu, 1407.5053,
after ATLAS, 1405.6241

Straightforward to translate constraint from GM model to its higher-isospin generalizations.

What about lower H_{5} masses?

Constraint on $H^{ \pm \pm} H^{\mp \mp}+H^{ \pm \pm} H^{\mp}$ in Higgs Triplet Model from recasting ATLAS like-sign dimuons search ATLAS, 1412.0237

Kanemura, Kikuchi, Yagyu \& Yokoya, 1412.7603
Adapt to generalized GM models using

$$
\begin{aligned}
\sigma_{\mathrm{tot}}^{\mathrm{NLO}}\left(p p \rightarrow H_{5}^{++} H_{5}^{--}\right)_{\mathrm{GM}} & =\sigma_{\mathrm{tot}}^{\mathrm{NLO}}\left(p p \rightarrow H^{++} H^{--}\right)_{\mathrm{HTM}} \\
\sigma_{\mathrm{tot}}^{\mathrm{NLO}}\left(p p \rightarrow H_{5}^{ \pm \pm} H_{5}^{\mp}\right)_{\mathrm{GM}} & =\frac{1}{2} \sigma_{\mathrm{tot}}^{\mathrm{NLO}}\left(p p \rightarrow H^{ \pm \pm} H^{\mp}\right)_{\mathrm{HTM}}
\end{aligned}
$$

What about lower H_{5} masses?

Decay-mode-independent OPAL search for $Z+S^{0}$ production: constrain $H_{5}^{0} Z Z$ coupling $\propto g_{5}$

HEL \& Rentala, 1502.01275; used HiggsBounds 4.2.0 for OPAL exclusion contour
Takes advantage of mass degeneracy H_{5}^{0} and H_{5}^{++}
Heather Logan (Carleton U.) Constraining exotic EWSB with VV
UdeM Feb 2016

Septet model (work in progress)
Two CP-even neutral scalars:

$$
h^{0}=c_{\alpha} \phi^{0, r}-s_{\alpha} \chi^{0, r}, \quad H^{0}=s_{\alpha} \phi^{0, r}+c_{\alpha} \chi^{0, r}
$$

One CP-odd neutral scalar: ($c_{H} \equiv v_{\phi} / v_{\mathrm{SM}}$ as usual)

$$
A^{0}=-s_{H} \phi^{0, i}+c_{H} \chi^{0, i}
$$

Two charged scalars:
(one fermiophilic and one vectorphilic, but they mix in general)

$$
\begin{aligned}
H_{f}^{+} & =-s_{H} \phi^{+}+c_{H}\left(\sqrt{\frac{5}{8}} \chi^{+1}-\sqrt{\frac{3}{3}}\left(\chi^{-1}\right)^{*}\right) \\
H_{V}^{+} & =\sqrt{\frac{3}{8}} \chi^{+1}+\sqrt{\frac{5}{8}}\left(\chi^{-1}\right)^{*}
\end{aligned}
$$

A doubly-charged scalar, that couples to $W^{+} W^{+}$:

$$
H^{++}=\chi^{+2}
$$

Some higher-charged states:

$$
\chi^{+3}, \quad \chi^{+4}, \quad \chi^{+5}
$$

- No H_{5}^{0}; would-be H_{5}^{+}mixes with fermiophilic state
- Rely on H^{++}to constrain higher-isospin vacuum condensate

Septet model (work in progress)

$$
H^{++} W_{\mu}^{-} W_{\nu}^{-}: \quad i \frac{2 M_{W}^{2}}{v_{\mathrm{SM}}}\left(\sqrt{15} s_{H}\right) g_{\mu \nu}
$$

VBF $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$is as good as ever!

VBF $H^{ \pm} \rightarrow W^{ \pm} Z$ loses its clean interpretation: $H^{+} \rightarrow \bar{f} f$ competes with $W^{+} Z ; m_{H^{+}} \neq m_{H^{+}}$in general

No custodial symmetry:

- Unitarity bound on s_{H} at high $m_{H^{++}}$is modified
- Sum-rule relationship between $H^{++} W^{-} W^{-}$and $h V V$ couplings is modified but these still remain useful.

Analysis of LHC constraints on septet-state pair production (trileptons; like-sign dileptons) excludes common masses $\lesssim 400 \mathrm{GeV}$

Alvarado, Lehman \& Ostdiek, 1404.3208

Summary \& outlook

A higher-isospin component of the vacuum condensate is possible, but it can be constrained experimentally!

Essential signature is $H^{ \pm \pm}, H^{ \pm}$(and sometimes H_{5}^{0}) coupled to $V V$: searches in VBF $\rightarrow V V$ directly constrain the exotic vev.

Georgi-Machacek model makes a good benchmark: easy to reinterpret searches in higher-isospin generalizations.

Septet model is best constrained by using $H^{ \pm \pm}$, since $H^{ \pm}$can mix with fermiophilic state.
$V V \rightarrow V V$ unitarity constraint means that pushing $H^{ \pm \pm}$heavier forces exotic vev to be smaller.

The least constrained model at high $m_{H^{++}}$is the original GM model:
exotic fraction of $M_{W, Z}^{2} \equiv s_{H}^{2} \lesssim\left(675 \mathrm{GeV} / m_{5}\right)^{2}$.

BACKUP

Detail:

SM + real triplet $\xi: \rho>1$

SM + complex triplet $\chi(Y=2): \rho<1$

Combine them both: $\left\langle\chi^{0}\right\rangle=v_{\chi},\left\langle\xi^{0}\right\rangle=v_{\xi} ;$ doublet $\left\langle\phi^{0}\right\rangle=v_{\phi} / \sqrt{2}$

$$
\rho=\frac{v_{\phi}^{2}+4 v_{\xi}^{2}+4 v_{\chi}^{2}}{v_{\phi}^{2}+8 v_{\chi}^{2}}=1 \text { when } v_{\xi}=v_{\chi}
$$

To avoid this being fine-tuned, enforce $v_{\xi}=v_{\chi}$ using a symmetry.
$\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$ global symmetry on scalar potential:

- present by accident in SM Higgs sector
- breaks to diagonal subgroup SU(2)custodial upon EWSB

Implementation of $\kappa_{V}^{h}>1$
$h V V$ coupling always suppressed in models with doublets/singlets:

- SM: $2 i \frac{M_{W}^{2}}{v} g_{\mu \nu}(v \simeq 246 \mathrm{GeV})$
- 2HDM: $2 i \frac{M_{W}^{2}}{v} g_{\mu \nu} \sin (\beta-\alpha)$
- SM + singlet: $2 i \frac{M_{W}^{2}}{v} g_{\mu \nu} \cos \alpha(h=\phi \cos \alpha-s \sin \alpha)$
$h W W$ coup can be enhanced in models with triplets (or larger):
- SM + some multiplet $X: 2 i \frac{M_{W}^{2}}{v} g_{\mu \nu} \cdot \frac{v_{X}}{v} 2\left[T(T+1)-\frac{Y^{2}}{4}\right]$

$$
\left(Q=T^{3}+Y / 2\right)
$$

- scalar with isospin ≥ 1
- must have a non-negligible vev
- must mix into the observed Higgs h

Motivation for enhanced $h V V$ couplings

Simultaneous enhancement of all the h couplings can hide a nonSM contribution to the Higgs width.

LHC measures rates in particular final states:

$$
\text { Rate }_{i j}=\frac{\sigma_{i} \Gamma_{j}}{\Gamma_{\text {tot }}}=\frac{\kappa_{i}^{2} \sigma_{i}^{\mathrm{SM}} \cdot \kappa_{j}^{2} \Gamma_{j}^{\mathrm{SM}}}{\sum_{k} \kappa_{k}^{2} \Gamma_{k}^{\mathrm{SM}}+\Gamma_{\text {new }}}
$$

All rates will be identical to SM Higgs if all $\kappa_{i} \equiv \kappa \geq 1$ and

$$
\kappa^{2}=\frac{1}{1-B R_{\text {new }}}
$$

$$
\mathrm{BR} \mathrm{new} \equiv \frac{\Gamma_{\text {new }}}{\kappa^{2} \Gamma_{\text {tot }}^{S M}+\Gamma_{\text {new }}}
$$

Coupling enhancement hides presence of new decays! New decays hide presence of coupling enhancement!

Constraint on $\Gamma^{\text {tot }}$ (equivalently on κ) from off-shell $g g\left(\rightarrow h^{*}\right) \rightarrow Z Z$ assumes no new resonances in s-channel: a light H can cancel effect of modified h couplings. 1412.7577

Study concrete models in which $\kappa>1$ to gain insight.

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2} \\
& +\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right) \\
& +\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

9 parameters, 2 fixed by M_{W} and $m_{h} \rightarrow$ free parameters are $m_{H}, m_{3}, m_{5}, v_{\chi}, \alpha$ plus two triple-scalar couplings.

Dimension-3 terms usually omitted by imposing Z_{2} sym. on X. These dim-3 terms are essential for the model to possess a decoupling limit!
$\left(U X U^{\dagger}\right)_{a b}$ is just the matrix X in the Cartesian basis of $\operatorname{SU}(2)$, found using

$$
U=\left(\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\
0 & 1 & 0^{2}
\end{array}\right)
$$

$\Rightarrow \kappa_{V}^{h} \lesssim 2.36$ for all m_{5} !
HEL \& Rentala, 1502.01275
compare $\kappa_{V}^{h} \lesssim 3.3$ in unconstrained GGM6

2 deliverables in YR4 draft:

- A fully-specified benchmark scenario for direct H_{5} searches
- Tables of VBF $\rightarrow H_{5}$ cross sections and decay widths

H5plane benchmark scenario:

- benchmark plane varying $m_{5} \in[200,3000] \mathrm{GeV}$ and $s_{H} \in(0,1)$

The 2 most relevant parameters for H_{5} direct searches are input parameters.
All other input parameters are specified, including $m_{h}=125 \mathrm{GeV}$.

- compatible with spectrum calculator GMCALC arXiv:1412.7387 INPUTSET $=4: m_{h}, m_{5}, s_{H}, \ldots$ are specified inputs
- satisfies theoretical constraints as much as possible near-largest possible region of $m_{5}-s_{H}$ plane theoretically accessible (main challenge)
- Choose $m_{3}>m_{5}$ so that $\operatorname{BR}\left(H_{5} \rightarrow V V\right)=1$ at tree level Higgs-to-Higgs $H_{5} \rightarrow H_{3} V, H_{3} H_{3}$ decays are kinematically forbidden: avoid complications

Specification of H5plane benchmark scenario:

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

9 input parameters $\Rightarrow \operatorname{trade}\left(\mu_{2}^{2}, \mu_{3}^{2}, \lambda_{1}, \lambda_{5}\right)$ for $\left(G_{F}, m_{5}, m_{h}, s_{H}\right)$

Fixed parameters	Variable parameters	Dependent parameters
$G_{F}=1.1663787 \times 10^{-5} \mathrm{GeV}^{-2}$	$m_{5} \in[200,3000] \mathrm{GeV}$	$\lambda_{2}=0.4\left(m_{5} / 1000 \mathrm{GeV}\right)$
$m_{h}=125 \mathrm{GeV}$	$s_{H} \in(0,1)$	$M_{1}=\sqrt{2} s_{H}\left(m_{5}^{2}+v^{2}\right) / v$
$\lambda_{3}=-0.1$		$M_{2}=M_{1} / 6$
$\lambda_{4}=0.2$		

Table 6.1: Specification of the H5plane benchmark for the Georgi-Machacek model. These input parameters correspond to INPUTSET = 4 in GMCALC [252].

VBF $\rightarrow H_{5}$ cross sections (NNLO QCD, LO EW, onshell H_{5}) and H_{5} decay widths (LO) for $H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}$

Update of numbers in LHCHXSWG-2015-001 (H. Logan \& M. Zaro), already consistent with H5plane benchmark scenario

$m_{5}[\mathrm{GeV}]$	$\sigma_{1}^{\text {NNLO }}\left(H_{5}^{0}\right)$ [fb]	$\sigma_{1}^{\text {NNLO }}\left(H_{5}^{+}\right)[\mathrm{fb}]$	$\sigma_{1}^{\text {NNLO }}\left(H_{5}^{-}\right)[\mathrm{fb}]$	$m_{5}[\mathrm{GeV}]$	$\sigma_{1}^{\text {NNLO }}\left(H_{5}^{++}\right)[\mathrm{fb}]$	$\sigma_{1}^{\text {NNLO }}\left(H_{5}^{--}\right)[\mathrm{fb}]$
200.	$1375 .{ }_{-0.20 \%}^{+0.35 \%} \pm 1.8 \% \pm 0.51 \%$	$1770 .{ }_{-0.18 \%}^{+0.30 \%} \pm 1.6 \% \pm 0.46 \%$	1148. ${ }_{-0.21 \%}^{+0.36 \%} \pm 2.2 \% \pm 0.54 \%$	200.	2511. ${ }_{-0.14 \%}^{+0.24 \%} \pm 1.9 \% \pm 0.40 \%$	$1070 .{ }_{-0.21 \%}^{+0.33 \%} \pm 2.9 \% \pm 0.54 \%$
210.	$1288 .{ }_{-0.19 \%}^{+0.33 \%} \pm 1.8 \% \pm 0.49 \%$	$1662 .{ }_{-0.17 \%}^{+0.28 \%} \pm 1.7 \% \pm 0.45 \%$	$1073 .{ }_{-0.21 \%}^{+0.34 \%} \pm 2.2 \% \pm 0.53 \%$	210.	2364. ${ }_{-0.14 \%}^{+0.24 \%} \pm 1.9 \% \pm 0.39 \%$	$997.0_{-0.20 \%}^{+0.31 \%} \pm 2.9 \% \pm 0.53 \%$
220.	$1209 .{ }_{-0.18 \%}^{+0.30 \%} \pm 1.8 \% \pm 0.48 \%$	$1564 .{ }_{-0.17 \%}^{+0.26 \%} \pm 1.7 \% \pm 0.44 \%$	$1004 .{ }_{-0.20 \%}^{+0.32 \%} \pm 2.2 \% \pm 0.52 \%$	220.	2229. ${ }_{-0.13 \%}^{+0.23 \%} \pm 1.9 \% \pm 0.38 \%$	$930.3_{-0.19 \%}^{+0.29 \%} \pm 3.0 \% \pm 0.52 \%$
230.	$1136 .{ }_{-0.17 \%}^{+0.28 \%} \pm 1.8 \% \pm 0.47 \%$	$1473 .{ }_{-0.16 \%}^{+0.25 \%} \pm 1.7 \% \pm 0.43 \%$	$940.9_{-0.19 \%}^{+0.31 \%} \pm 2.2 \% \pm 0.51 \%$	230.	2104. ${ }_{-0.13 \%}^{+0.24 \%} \pm 1.9 \% \pm 0.37 \%$	$869.2_{-0.19 \%}^{+0.27 \%} \pm 3.0 \% \pm 0.51 \%$
240.	1069. ${ }_{-0.17 \%}^{+0.26 \%} \pm 1.8 \% \pm 0.46 \%$	1388. ${ }_{-0.15 \%}^{+0.25 \%} \pm 1.7 \% \pm 0.42 \%$	$883.0_{-0.18 \%}^{+0.29 \%} \pm 2.3 \% \pm 0.50 \%$	240.	1988. ${ }_{-0.12 \%}^{+0.24 \%} \pm 1.9 \% \pm 0.35 \%$	$813.3_{-0.18 \%}^{+0.25 \%} \pm 3.0 \% \pm 0.51 \%$
250.	1006. ${ }_{-0.16 \%}^{+0.27 \%} \pm 1.8 \% \pm 0.46 \%$	1311. ${ }_{-0.14 \%}^{+0.25 \%} \pm 1.7 \% \pm 0.41 \%$	$829.6_{-0.17 \%}^{+0.27 \%} \pm 2.3 \% \pm 0.49 \%$	250.	$1881 .{ }_{-0.11 \%}^{+0.24 \%}$ +0.21\% $\pm 1.9 \% \pm 0.34 \%$	
260.	$948.9_{-0.15 \%}^{+0.27 \%}+1.8 \% \pm 0.45 \%$			260.	$1781{ }_{-0.10 \%}^{+0.24 \%} \pm 1.9 \% \pm 0.33 \%$	$714.8_{-0.18 \%}^{-0.25 \%} \pm 3.1 \% \pm 0.49 \%$

Uncert on σ from uncalculated NLO EW corrs $\simeq \pm 7 \%$

$m_{5}[\mathrm{GeV}]$	$\Gamma_{1}^{\text {tot }}\left(H_{5}^{ \pm \pm}\right)[\mathrm{GeV}]$	$\Gamma_{1}^{\text {tot }}\left(H_{5}^{ \pm}\right)[\mathrm{GeV}]$	$\Gamma_{1}^{\text {tot }}\left(H_{5}^{0}\right)[\mathrm{GeV}]$	$\operatorname{BR}\left(H_{5}^{0} \rightarrow W^{+} W^{-}\right)$
200.	1.006	0.8608	0.8008	$0.4187_{-14 . \%}^{+14 . \%}$
210.	1.275	1.118	1.071	$0.3969_{-14 . \%}^{+15 . \%}$
220.	1.578	1.410	1.362	$0.3863_{-14 . \%}^{+15 \%}$
230.	1.921	1.737	1.686	$0.3799_{-14 . \%}^{+15 \%}$
240.	2.307	2.105	2.051	$0.3749_{-15}^{+15 . \%}$
250.	2.739	2.516	2.459	$0.3714_{-15 . \%}^{+16 . \%}$
260.	3.219	2.975	2.912	$0.3685_{-15 \%}^{+16 . \%}$

Uncert on Γ from uncalculated NLO EW corrs $\simeq \pm 12 \%$
s_{H} dependence incorporated via $\sigma \equiv s_{H}^{2} \sigma_{1}, \Gamma \equiv s_{H}^{2} \Gamma_{1}$

Update of numbers in LHCHXSWG-2015-001 (H. Logan \& M. Zaro), what's new:

- Used current YR4-recommended electroweak input parameters

$$
\begin{array}{lll}
G_{F}=1.1663787 \cdot 10^{-5} \mathrm{GeV}^{-2}, & M_{W}=80.385 \mathrm{GeV}, & M_{Z}=91.1876 \mathrm{GeV} \\
& \Gamma_{W}=2.085 \mathrm{GeV}, & \Gamma_{Z}=2.4952 \mathrm{GeV}
\end{array}
$$

- Used PDF4LHC NNLO parton dist'n fns with $\alpha_{s}\left(M_{Z}\right)=0.118$, renorm \& factorization scales set to M_{W} \& varied by $[1 / 2,2]$
- H_{5} decay widths to $V V$ (tree-level) now computed including doubly-offshell effects (GMCALC 1.2.0)
- Used YR4 recommended mass points for m_{5} : 200-500 GeV in steps of 10 GeV , 500-3000 GeV in steps of 50 GeV

Summary \& outlook

\star Custodial symmetry + unitarity sum rules extremely powerful!

- VBF $H_{5}^{ \pm} \rightarrow W^{ \pm} Z$ search coming from ATLAS (Moriond?)
- Weakest constraint: $m_{5} \sim 76-100 \mathrm{GeV}$. Offshell/loop decays?
\star High-mass $V V \rightarrow V V$ unitarity constraint is not saturated by full theory-constrained model: scan in GM model:

- perturb. unitarity of quartic couplings
- scalar potential bounded from below
- no deeper custodial-violating minima
- $b \rightarrow s \gamma$ constraint

Explicit scalar potentials for GGM models now available: full study feasible (but tedious)

* Sum rules are different in septet model: no H_{5}^{0} state, no custodial symmetry in scalar sector \Longrightarrow under investigation

