Limits on exotic contributions
 to electroweak symmetry breaking

Heather Logan
Carleton University
Ottawa, Canada

Higgs as a Probe of New Physics 2019
Osaka, Japan, February 18-22, 2019

NSERC CRSNG

In the SM we break the electroweak symmetry with a scalar doublet - the minimal nontrivial representation of $S U(2)_{L}$.

Fermion weak charges are directly measured - need a doublet to generate fermion masses. (except maybe neutrinos)

But the multiplet structure of the Higgs sector is not yet determined.

There could be contributions to the vacuum condensate from "exotic" scalars $=$ scalars with higher isospin.

Usual approach: models with custodial symmetry (Georgi-Machacek model) or a built-in cancellation (Scalar Septet Model) to ensure $\rho=1$ at tree level. Experiment: $\rho_{0}=1.00039 \pm 0.00019$ (PDG 2018)

Otherwise, exotic vevs must be very small, or tuned between exotic mults to cancel contributions to ρ. [Chiang \& Yagyu 1808.10152]

SM Higgs (bi-)doublet + triplets $(1,0)+(1,1)$ in a bi-triplet:

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Global $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R} \rightarrow$ custodial symmetry $\left\langle\chi^{0}\right\rangle=\left\langle\xi^{0}\right\rangle \equiv v_{\chi}$
Physical spectrum:
Bi-doublet: $2 \otimes 2 \rightarrow 1 \oplus 3 \quad$ Bi-triplet: $3 \otimes 3 \rightarrow 1 \oplus 3 \oplus 5$

- Two custodial singlets mix $\rightarrow h, H m_{h}, m_{H}$, angle α Usually identify $h=h(125)$
- Two custodial triplets mix $\rightarrow\left(H_{3}^{+}, H_{3}^{0}, H_{3}^{-}\right) m_{3}+$ Goldstones Phenomenology very similar to $H^{ \pm}, A^{0}$ in 2HDM Type I, $\tan \beta \rightarrow \cot \theta_{H}$
- Custodial fiveplet ($\left.H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}\right) m_{5}$ Fermiophobic; $H_{5} V V$ couplings $\propto s_{H} \equiv \sqrt{8} v_{\chi} / v_{\mathrm{SM}}$ $s_{H}^{2} \equiv$ exotic fraction of M_{W}^{2}, M_{Z}^{2}

Most stringent constraint: VBF $\rightarrow H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$CMS, arXiv:1709.05822

> Also ATLAS + CMS searches for $H_{5}^{ \pm} \rightarrow W^{ \pm} Z$

For $m_{H^{++}}>1000 \mathrm{GeV}$, theory upper bound on s_{H} from unitarity of quartic couplings takes over $\Rightarrow s_{H} \leq 0.5$ at $m_{H^{++}}=1000 \mathrm{GeV}$.

Cross section $\propto s_{H}^{2} \equiv$ fraction of M_{W}^{2}, M_{Z}^{2} due to exotic scalars Probed by direct searches in GM model: ~ 4\% - 20\%

Scalar septet model $(T, Y)=(3,2)$
Hisano \& Tsumura, 1301.6455; Kanemura, Kikuchi \& Yagyu, 1301.7303

$$
\Phi=\binom{\phi^{+}}{\phi^{0}}, \quad X=\left(\begin{array}{c}
\chi^{+5} \\
\chi^{+4} \\
\chi^{+3} \\
\chi^{+2} \\
\chi^{+1} \\
\chi^{0} \\
\chi^{-1}
\end{array}\right) .
$$

$\rho=1$, yet there is no custodial symmetry in the scalar spectrum
Detailed pheno study in Alvarado, Lehman \& Ostdiek, 1404.3208:

- h^{0} couplings \rightarrow upper bound on septet vev
- LHC SUSY searches (2SSL, 3L) + inclusive septet pair production \rightarrow lower bound on common septet mass
$H^{++}=\chi^{+2}$ completely analogous to GM model:
apply direct search for VBF $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$
\rightarrow constrain $s_{7}^{2}=$ fraction of M_{W}^{2}, M_{Z}^{2} from septet vev

Scalar septet model $(T, Y)=(3,2)$
CMS VBF $\rightarrow H^{ \pm} \rightarrow W^{ \pm} W^{ \pm}$and $V V \rightarrow V V$ unitarity constraint

Fraction of M_{W}^{2} and M_{Z}^{2} from exotic vev $\equiv s_{7}^{2}<2 \%$!
Dots: LHC SUSY searches, h^{0} couplings Alvarado, Lehman \& Ostdiek, 1404.3208 Plot based on LHC Run 1 constraints only - now even stronger.

Models with potentially large exotic contributions to EWSB are getting significantly constrained by direct LHC searches and Higgs signal strength measurements.

At what point do we decide that these models are no longer interesting?

Our proposal: when the fraction of M_{W}^{2} and M_{Z}^{2} allowed in these models is no larger than can be achieved from any random exotic scalar multiplet, subject to the ρ parameter constraint.
J. Goodman \& HEL, in progress

- Write down complete list of exotic multiplets with EWSB vevs
- Constrain vev using ρ parameter
- Compute maximum M_{W}^{2} and M_{Z}^{2} contributions

Complication: experimental bound on ρ is so tight that one-loop contributions can be as large as the tree-level vev contribution.

Upper bound on isospin of (perturbative!) exotic multiplets

Higher isospin \rightarrow higher maximum "weak charge" ($g T^{3}$, etc.) Higher isospin \rightarrow higher multiplicity of scalars

Consider scattering of scalars into transversely polarized Ws \& Zs (the ordinary gauge modes) and require tree-level unitarity:

$$
\left|\operatorname{Re} a_{\ell}\right| \leq 1 / 2, \quad \mathcal{M}=16 \pi \sum_{\ell}(2 \ell+1) a_{\ell} P_{\ell}(\cos \theta)
$$

$\chi \chi^{*} \leftrightarrow W_{T}^{a} W_{T}^{a}$ largest eigenvalue:
Hally, HEL, \& Pilkington 1202.5073

$$
a_{0}=\frac{g^{2}}{16 \pi} \frac{\left(n^{2}-1\right) \sqrt{n}}{2 \sqrt{3}} \quad(\text { complex } \chi, n=2 T+1)
$$

- Real scalar multiplet: divide by $\sqrt{2}$ to account for smaller multiplicity
- More than one multiplet: add a_{0} 's in quadrature
- Complex multiplet $\Rightarrow T \leq 7 / 2$ (8-plet)
- Real multiplet $\Rightarrow T \leq 4$ (9-plet)
- Constraints tighter if there is more than one large multiplet

Tree-level ρ parameter calculation

Extremely strong constraint on exotic multiplet vevs from precision electroweak data:

$$
\begin{gathered}
\rho_{0}=\frac{\text { weak neutral current }}{\text { weak charged current }}=\frac{\left(g^{2}+g^{2}\right) / M_{Z}^{2}}{g^{2} / M_{W}^{2}}=\frac{v_{\phi}^{2}+a\left\langle X^{0}\right\rangle^{2}}{v_{\phi}^{2}+b\left\langle X^{0}\right\rangle^{2}} \\
\begin{array}{c}
a=4\left[T(T+1)-Y^{2}\right] c \quad b=8 Y^{2} \\
\text { Complex mult: } c=1 . \text { Real mult: } c=1 / 2 .
\end{array} \quad \text { Doublet: } Y=1 / 2
\end{gathered}
$$

Electroweak fit [PDG June 2018, Erler \& Freitas]:

$$
S=0.02 \pm 0.10 \quad T=0.07 \pm 0.12 \quad U=0.00 \pm 0.09
$$

Correlations: $S-T:+92 \%, \quad S-U:-66 \%, T-U:-86 \%$
ρ parameter is extracted by setting $S=U=0$ and using

$$
\rho_{0}-1=\frac{1}{1-\widehat{\alpha}\left(M_{Z}\right) T_{\text {tree }}}-1 \simeq \widehat{\alpha}\left(M_{Z}\right) T_{\text {tree }}
$$

Tree-level ρ parameter versus S, T, U

Jesi Goodman \& HEL, in progress

$$
a=4\left[T(T+1)-Y^{2}\right] c \quad b=8 Y^{2}
$$

Tree-level ρ parameter constraints (S, T, U fit) J. Goodman \& HEL

		Best fit				Allowed range $\left(\Delta \chi^{2} \leq 4\right)$	
T	Y	$\delta \rho$	δM_{W}^{2}	δM_{Z}^{2}	δM_{W}^{2}	δM_{Z}^{2}	
$1 / 2$	$1 / 2$	0	-	-	-	-	
1	0	+	0.042%	0.000%	$[0.005 \%, 0.078 \%]$	$[0.000 \%, 0.000 \%]$	
1	1	-	0.000%	0.000%	$[0.000 \%, 0.014 \%]$	$[0.000 \%, 0.027 \%]$	
$3 / 2$	$1 / 2$	+	0.049%	0.007%	$[0.006 \%, 0.091 \%]$	$[0.001 \%, 0.013 \%]$	
$3 / 2$	$3 / 2$	-	0.000%	0.000%	$[0.000 \%, 0.007 \%]$	$[0.000 \%, 0.021 \%]$	
2	0	+	0.042%	0.000%	$[0.005 \%, 0.078 \%]$	$[0.000 \%, 0.000 \%]$	
2	1	+	0.069%	0.028%	$[0.009 \%, 0.130 \%]$	$[0.003 \%, 0.052 \%]$	
2	2	-	0.000%	0.000%	$[0.000 \%, 0.005 \%]$	$[0.000 \%, 0.018 \%]$	
$5 / 2$	$1 / 2$	+	0.044%	0.003%	$[0.005 \%, 0.083 \%]$	$[0.000 \%, 0.005 \%]$	
$5 / 2$	$3 / 2$	+	0.135%	0.093%	$[0.017 \%, 0.253 \%]$	$[0.012 \%, 0.175 \%]$	
$5 / 2$	$5 / 2$	-	0.000%	0.000%	$[0.000 \%, 0.003 \%]$	$[0.000 \%, 0.017 \%]$	
3	0	+	0.042%	0.000%	$[0.005 \%, 0.078 \%]$	$[0.000 \%, 0.000 \%]$	
3	1	+	0.051%	0.009%	$[0.006 \%, 0.095 \%]$	$[0.001 \%, 0.017 \%]$	
3	2	0	-	-	-	-	
3	3	-	0.000%	0.000%	$[0.000 \%, 0.003 \%]$	$[0.000 \%, 0.016 \%]$	
$7 / 2$	$1 / 2$	+	0.043%	0.001%	$[0.005 \%, 0.080 \%]$	$[0.000 \%, 0.003 \%]$	
$7 / 2$	$3 / 2$	+	0.062%	0.021%	$[0.008 \%, 0.117 \%]$	$[0.003 \%, 0.039 \%]$	
$7 / 2$	$5 / 2$	-	0.000%	0.000%	$[0.000 \%, 0.043 \%]$	$[0.000 \%, 0.057 \%]$	
$7 / 2$	$7 / 2$	-	0.000%	0.000%	$[0.000 \%, 0.002 \%]$	$[0.000 \%, 0.016 \%]$	
4	0	+	0.042%	0.000%	$[0.005 \%, 0.078 \%]$	$[0.000 \%, 0.000 \%]$	

\Rightarrow our target M_{W}^{2} fraction sensitivity is $\sim 0.25 \%$.

Beyond tree level

T parameter calculation involving exotic mults is subtle:
have to renormalize $T_{\text {tree }}$. Chankowski, Pokorski \& Wagner, hep-ph/0605302
\rightarrow Handle this by constraining renormalized vev (choose counterterm to cancel tadpole).

Full calculation of 1-loop S, T, U in these models is quite involved.
\rightarrow Work in a double expansion:
1st order in exotic vev ($T_{\text {tree }}$) and 1 st order in $\alpha_{\text {EM }}$ (1-loop)
Can use existing results for $(S, T, U)_{\text {Ioop }}$ from a scalar electroweak multiplet with zero vev.

Nonzero $(S, T, U)_{\text {loop }}$ driven by mass splitting in exotic multiplet:

$$
S_{\text {loop }} \sim Y \times \frac{-\delta m^{2}}{M^{2}} \quad T_{\text {loop }} \sim \frac{\left(\delta m^{2}\right)^{2}}{M^{2} M_{Z}^{2}} \quad U_{\text {loop }} \sim\left(\frac{\delta m^{2}}{M^{2}}\right)^{2}
$$

Mass splitting in the exotic multiplet

Ignore exotic multiplet's vev (consistent with double expansion). Mass splitting is due to EWSB driven by doublet vev:

$$
V \supset \lambda_{1}\left(\Phi^{\dagger} \tau^{a} \Phi\right)\left(X^{\dagger} T^{a} X\right)+\left[\lambda_{2}\left(\tilde{\Phi}^{\dagger} \tau^{a} \Phi\right)\left(X^{\dagger} T^{a} \tilde{X}\right)+\text { h.c. }\right]
$$

$\tilde{\Phi}, \tilde{X}=$ conjugate multiplets
λ_{1} term generates a uniform m^{2} splitting among T^{3} eigenstates:

$$
m_{T^{3}}^{2}=M^{2}-\frac{1}{4} \lambda_{1} v_{\phi}^{2} T^{3} \equiv M^{2}+\delta m^{2} T^{3}
$$

λ_{1} term is absent for real $Y=0$ mults:
$S_{\text {loop }}=T_{\text {loop }}=U_{\text {loop }}=0$, constraints same as tree level.
Modulo M.J. Ramsey-Musolf's talk... have to check this!
λ_{2} term is present only for $T=3 / 2,5 / 2,7 / 2$ and $Y=1 / 2$.
Mixes states with different T^{3} but same electric charge.
Calculation still in progress: set $\lambda_{2}=0$ for now.

Results: complex multiplets with $Y=0\left(T_{\text {tree }}>0\right)$
$T_{\text {tree }}>0, T_{\text {loop }} \geq 0, S_{\text {loop }} \propto Y=0$:
Bound is loosest when δm^{2} splitting $=0$.

J. Goodman \& HEL, in progress

Upper bounds unchanged from tree-level: $\delta M_{W}^{2} \leq 0.078 \%$.
Heather Logan (Carleton U.)
Exotic EWSB
HPNP 2019 Osaka

Results: multiplets with $T_{\text {tree }}>0$ and $Y \neq 0$
Take advantage of correlation between S and T to try to ease the constraint.

$$
S_{\text {loop }} \sim Y \times \frac{-\delta m^{2}}{M^{2}} \quad T_{\text {loop }} \sim \frac{\left(\delta m^{2}\right)^{2}}{M^{2} M_{Z}^{2}} \quad U_{\text {loop }} \sim\left(\frac{\delta m^{2}}{M^{2}}\right)^{2}
$$

Results: multiplets with $T_{\text {tree }}>0$ and $Y \neq 0$

Best to take M^{2} as small as possible and λ_{1} small and positive to generate positive $S_{\text {loop }}$ while minimizing additional positive $T_{\text {loop }}$. (Physically, positive λ_{1} means that the member of the multiplet with the highest electric charge is lightest.)

T	Y	$\delta \rho$	$\delta M_{W}^{2} \mid \max$	$\delta M_{Z}^{2} \mid \max$
$* 3 / 2$	$1 / 2$	+	0.112%	0.016%
2	1	+	0.207%	0.083%
$* 5 / 2$	$1 / 2$	+	0.111%	0.007%
$5 / 2$	$3 / 2$	+	0.442%	0.307%
3	1	+	0.159%	0.029%
$* 7 / 2$	$1 / 2$	+	0.114%	0.004%
$7 / 2$	$3 / 2$	+	0.208%	0.069%

Compare tree-level
0.253%, 0.175\%
*To be revisited including λ_{2} effect mixing T^{3} eigenstates: in progress
J. Goodman \& HEL, in progress

Results: multiplets with $T_{\text {tree }}<0$

$T_{\text {loop }}>0$: can cancel negative $T_{\text {tree }}$!
Ultimately $S_{\text {loop }}$ generated at the same time will limit size of cancellation, along with perturbative unitarity bound on λ_{1}.

Best to take M^{2} rather large and $\left|\lambda_{1}\right|$ as large as possible to maximize $T_{\text {loop }}$ while minimizing $S_{\text {loop }}$. (Sign of λ_{1} doesn't matter much.)

$$
S_{\text {loop }} \sim Y \times \frac{-\delta m^{2}}{M^{2}} \quad T_{\text {loop }} \sim \frac{\left(\delta m^{2}\right)^{2}}{M^{2} M_{Z}^{2}} \quad U_{\text {loop }} \sim\left(\frac{\delta m^{2}}{M^{2}}\right)^{2}
$$

Results: multiplets with $T_{\text {tree }}<0$

J. Goodman \& HEL, in progress

Conclusions

Tree-level contribution to the ρ parameter limits M_{W}^{2} contribution from a single exotic multiplet to at most 0.25%.

But the ρ parameter constraint is so tight that one should really consider 1-loop contributions along with tree-level.

Mass-splitting effects within exotic multiplet can loosen tree-level bound on vev significantly:
Tree-level contributions to M_{W}^{2} and M_{Z}^{2} up to 3.6% and 7.0% (respectively) are still allowed for $Y=1$ triplet.

Compare direct-search and Higgs-coupling constraints that limit $M_{W, Z}^{2}$ contribution to $\sim 4 \%-20 \%$ in GM model and to $\sim 2 \%$ in septet model.

Still working on the cases with mixing of T^{3} eigenstates: S, T, U interdependence qualitatively different. (Ex: $T_{\text {loop }}<0$ possible.)

BACKUP

$\chi^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$search done for first time in Run 2 (W s on shell)

ATLAS, arXiv:1808.01899
Theorist recast of ATLAS Run-1 like-sign dimuon data sets lower bound $m_{\chi++} \gtrsim 84 \mathrm{GeV}$ Kanemura, Kikuchi, Yagyu \& Yokoya, 1412.7603 Gap at intermediate masses $<200 \mathrm{GeV}$: need offshell $W \mathrm{~s}$!

Heather Logan (Carleton U.)
Exotic EWSB
HPNP 2019 Osaka

For $H_{5}^{ \pm \pm}, H_{5}^{ \pm}, H_{5}^{0}$ masses below 200 GeV , constraints are mainly theory-recast: new "low- m_{5} " benchmark in GM model,

Ben Keeshan, WG3 Extended Scalars meeting, 2018-10-24

Recast ATLAS Run1 $\gamma \gamma$ resonance, GMCALC 1.5.0 beta
Extending Drell-Yan $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$search to masses below 200 GeV (w/ offshell W s) could exclude entire low- m_{5} region!

Heather Logan (Carleton U.)

Exotic EWSB
HPNP 2019 Osaka

$$
\chi \chi \leftrightarrow W_{T}^{a} W_{T}^{a}
$$

$$
a_{0}=\frac{g^{2}}{16 \pi} \frac{\left(n^{2}-1\right) \sqrt{n}}{2 \sqrt{3}}
$$

complex $\chi, n=2 T+1$

- Real scalar multiplet: divide by $\sqrt{2}$ to account for smaller multiplicity
- More than one multiplet: add a_{0} 's in quadrature
- Complex multiplet $\Rightarrow T \leq 7 / 2$ (8-plet)
- Real multiplet $\Rightarrow T \leq 4$ (9-plet)
- Constraints tighter if there is more than one large multiplet

How much can these contribute to EWSB?

$$
\begin{aligned}
\mathcal{L} \supset & \frac{g^{2}}{2}\left\{\langle X\rangle^{\dagger}\left(T^{+} T^{-}+T^{-} T^{+}\right)\langle X\rangle\right\} W_{\mu}^{+} W^{-\mu} \\
& +\frac{\left(g^{2}+g^{\prime 2}\right)}{2}\left\{\langle X\rangle^{\dagger}\left(T^{3} T^{3}+Y^{2}\right)\langle X\rangle\right\} Z_{\mu} Z^{\mu}+\cdots
\end{aligned}
$$

Must have at least one doublet to give masses to SM fermions

$$
\begin{aligned}
M_{W}^{2} & =\left(\frac{g^{2}}{4}\right)\left[v_{\phi}^{2}+a\left\langle X^{0}\right\rangle^{2}\right] \\
M_{Z}^{2} & =\left(\frac{g^{2}+g^{2}}{4}\right)\left[v_{\phi}^{2}+b\left\langle X^{0}\right\rangle^{2}\right]
\end{aligned}
$$

where $\left\langle\Phi_{\mathrm{SM}}\right\rangle=\left(0, v_{\phi} / \sqrt{2}\right)^{T}$ and

$$
\begin{aligned}
a= & 4\left[T(T+1)-Y^{2}\right] c \\
b= & 8 Y^{2} \\
& c=1 \text { for complex and } c=1 / 2 \text { for real multiplet }
\end{aligned}
$$

SM Higgs doublet: $a=b=2\left(\right.$ cancels $(1 / \sqrt{2})^{2}$ in $\left.\left\langle\Phi^{0}\right\rangle^{2}\right)$

Complete list of models with sizable exotic sources of EWSB:

1) Doublet $+\operatorname{septet}(T, Y)=(3,2)$: Scalar septet model

Hisano \& Tsumura, 1301.6455; Kanemura, Kikuchi \& Yagyu, 1301.7303
2) Doublet + triplets $(1,0)+(1,1)$: Georgi-Machacek model (ensure triplet vevs are equal using a global "custodial" symmetry)

Georgi \& Machacek 1985; Chanowitz \& Golden 1985
3) Doublet + quartets $\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)$: Generalized Georgi-
4) Doublet + quintets $(2,0)+(2,1)+(2,2)$: Machacek models
5) Doublet $+\operatorname{sextets}\left(\frac{5}{2}, \frac{1}{2}\right)+\left(\frac{5}{2}, \frac{3}{2}\right)+\left(\frac{5}{2}, \frac{5}{2}\right)$:
(ensure exotics' vevs are equal using a global "custodial" symmetry)
Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015
Larger than sextets \rightarrow too many large multiplets, violates perturbativity!

Can also have duplications, combinations \rightarrow ignore that here.

Explicit LHC searches up to now:
$\mathrm{VBF} \rightarrow H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm} \rightarrow \mathrm{CMS} \quad$ VBF + like-sign dileptons +MET $\mathrm{VBF} \rightarrow H_{5}^{ \pm} \rightarrow W^{ \pm} Z \rightarrow \mathrm{ATLAS}+\mathrm{CMS} \quad \mathrm{VBF} q q \ell \ell ; \mathrm{VBF} 3 \ell+\mathrm{MET}$

Cross section $\propto s_{H}^{2} \equiv$ fraction of M_{W}^{2}, M_{Z}^{2} due to exotic scalars

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015
3) Doublet + quartets $\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)$
4) Doublet + quintets $(2,0)+(2,1)+(2,2)$
5) Doublet + sextets $\left(\frac{5}{2}, \frac{1}{2}\right)+\left(\frac{5}{2}, \frac{3}{2}\right)+\left(\frac{5}{2}, \frac{5}{2}\right)$

Replace the GM bi-triplet with a bi-n-plet \Longrightarrow "GGMn"

Original GM model ("GM3"): $(1,0)+(1,1)$ in a bi-triplet

$$
X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015
3) Doublet + quartets $\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)$
4) Doublet + quintets $(2,0)+(2,1)+(2,2)$
5) Doublet + sextets $\left(\frac{5}{2}, \frac{1}{2}\right)+\left(\frac{5}{2}, \frac{3}{2}\right)+\left(\frac{5}{2}, \frac{5}{2}\right)$

Replace the GM bi-triplet with a bi-n-plet
"GGM4": $\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)$ in a bi-quartet

$$
X_{4}=\left(\begin{array}{cccc}
\psi_{3}^{0 *} & -\psi_{1}^{-*} & \psi_{1}^{++} & \psi_{3}^{+3} \\
-\psi_{3}^{+*} & \psi_{1}^{0 *} & \psi_{1}^{+} & \psi_{3}^{+} \\
\psi_{3}^{++*} & -\psi_{1}^{+*} & \psi_{1}^{0} & \psi_{3}^{+} \\
-\psi_{3}^{+3 *} & \psi_{1}^{++*} & \psi_{1}^{-} & \psi_{3}^{0}
\end{array}\right)
$$

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015
3) Doublet + quartets $\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)$
4) Doublet + quintets $(2,0)+(2,1)+(2,2)$
5) Doublet + sextets $\left(\frac{5}{2}, \frac{1}{2}\right)+\left(\frac{5}{2}, \frac{3}{2}\right)+\left(\frac{5}{2}, \frac{5}{2}\right)$

Replace the GM bi-triplet with a bi- n-plet
"GGM5": $(2,0)+(2,1)+(2,2)$ in a bi-quintet

$$
X_{5}=\left(\begin{array}{ccccc}
\pi_{4}^{0 *} & -\pi_{2}^{-*} & \pi_{0}^{++} & \pi_{2}^{+3} & \pi_{4}^{+4} \\
-\pi_{4}^{+*} & \pi_{2}^{0 *} & \pi_{0}^{+} & \pi_{2}^{+} & \pi_{4}^{+3} \\
\pi_{4}^{++*} & -\pi_{2}^{+*} & \pi_{0}^{0} & \pi_{2}^{+} & \pi_{4}^{++} \\
-\pi_{4}^{+3 *} & \pi_{2}^{++*} & -\pi_{0}^{+*} & \pi_{2}^{0} & \pi_{4}^{+} \\
\pi_{4}^{+4 *} & -\pi_{2}^{+3 *} & \pi_{0}^{++*} & \pi_{2}^{-} & \pi_{4}^{0}
\end{array}\right)
$$

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015
3) Doublet + quartets $\left(\frac{3}{2}, \frac{1}{2}\right)+\left(\frac{3}{2}, \frac{3}{2}\right)$
4) Doublet + quintets $(2,0)+(2,1)+(2,2)$
5) Doublet + sextets $\left(\frac{5}{2}, \frac{1}{2}\right)+\left(\frac{5}{2}, \frac{3}{2}\right)+\left(\frac{5}{2}, \frac{5}{2}\right)$

Replace the GM bi-triplet with a bi- n-plet
\Longrightarrow "GGMn"
"GGM6": $\left(\frac{5}{2}, \frac{1}{2}\right)+\left(\frac{5}{2}, \frac{3}{2}\right)+\left(\frac{5}{2}, \frac{5}{2}\right)$ in a bi-sextet

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015
Bi-doublet: $2 \otimes 2 \rightarrow 1 \oplus 3 \quad$ Bi-triplet: $3 \otimes 3 \rightarrow 1 \oplus 3 \oplus 5$
Bi-quartet: $4 \otimes 4 \rightarrow 1 \oplus 3 \oplus 5 \oplus 7$
Bi-pentet: $5 \otimes 5 \rightarrow 1 \oplus 3 \oplus 5 \oplus 7 \oplus 9$ Bi-sextet: $6 \otimes 6 \rightarrow 1 \oplus 3 \oplus 5 \oplus 7 \oplus 9 \oplus 11$ Larger bi-n-plets forbidden by perturbativity of weak charges!

- Two custodial singlets mix $\rightarrow h^{0}, H^{0}$
- Two custodial triplets mix $\rightarrow\left(H_{3}^{+}, H_{3}^{0}, H_{3}^{-}\right)+$Goldstones
- Custodial fiveplet ($\left.H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}\right)$
- Additional states

Compositions \& couplings of fiveplet states are determined by the global symmetry!

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015
Custodial-fiveplet is fermiophobic; couples to $V V$:

$$
\begin{aligned}
H_{5}^{0} W_{\mu}^{+} W_{\nu}^{-}: & -i \frac{2 M_{W}^{2}}{v} \frac{g_{5}}{\sqrt{6}} g_{\mu \nu} \\
H_{5}^{0} Z_{\mu} Z_{\nu}: & i \frac{2 M_{Z}^{2}}{v} \sqrt{\frac{2}{3}} g_{5} g_{\mu \nu} \\
H_{5}^{+} W_{\mu}^{-} Z_{\nu}: & -i \frac{2 M_{W} M_{Z}}{v} \frac{g_{5}}{\sqrt{2}} g \\
I_{5}^{++} W_{\mu}^{-} W_{\nu}^{-}: & i \frac{2 M_{W}^{2}}{v} g_{5} g_{\mu \nu}, \\
\mathrm{GM} 3: & g_{5}=\sqrt{2} s_{H} \\
\mathrm{GGM} 4: & g_{5}=\sqrt{24 / 5} s_{H} \\
\mathrm{GGM} 5: & g_{5}=\sqrt{42 / 5} s_{H} \\
\mathrm{GGM} 6: & g_{5}=\sqrt{64 / 5} s_{H}
\end{aligned}
$$

$s_{H}^{2}=$ fraction of M_{W}^{2}, M_{Z}^{2} from exotic scalars

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL \& Rentala 2015

HEL \& Rentala, 1502.01275
(plot needs updating: CMS Run 1 direct search not shown)
Heather Logan (Carleton U.)
Exotic EWSB
HPNP 2019 Osaka

One more constraint from $V V \rightarrow H_{5} \rightarrow V V$: unitarity!

(a)

(b)

(d)

(c)

(e)

SM: $m_{h}^{2}<16 \pi v^{2} / 5 \simeq(780 \mathrm{GeV})^{2}$ Lee, Quigg \& Thacker 1977
$\mathrm{GM}: s_{H}^{2}<12 \pi v^{2} / 5 m_{5}^{2} \simeq\left(675 \mathrm{GeV} / m_{5}\right)^{2}$

One more constraint from $V V \rightarrow H_{5} \rightarrow V V$: unitarity!

Scalar septet model $(T, Y)=(3,2)$
Hisano \& Tsumura, 1301.6455; Kanemura, Kikuchi \& Yagyu, 1301.7303

$$
\Phi=\binom{\phi^{+}}{\phi^{0}}, \quad X=\left(\begin{array}{c}
\chi^{+5} \\
\chi^{+4} \\
\chi^{+3} \\
\chi^{+2} \\
\chi^{+1} \\
\chi^{0} \\
\chi^{-1}
\end{array}\right) \text {. }
$$

$\rho=1$, yet there is no custodial symmetry in the scalar spectrum
$-H^{++}=\chi^{+2}$: analogue of H_{5}^{++}

- $\phi^{+}, \chi^{+1},\left(\chi^{-1}\right)^{*}$ mix: no purely fermiophobic analogue of H_{5}^{+}
- Only 2 CP-even neutral scalars $\left(h^{0}, H^{0}\right)$: no analogue of H_{5}^{0}

$$
H^{++} W_{\mu}^{-} W_{\nu}^{-}: \quad i \frac{2 M_{W}^{2}}{v} \sqrt{15} s_{7} g_{\mu \nu}
$$

$s_{7}^{2}=$ fraction of M_{W}^{2}, M_{Z}^{2} from septet vev

Results: multiplets with $T_{\text {tree }}>0$ and $Y \neq 0$
Take advantage of correlation between S and T to try to ease the constraint.

$$
\begin{array}{lrl}
S_{\text {loop }} \sim-\frac{\delta m^{2}}{M^{2}} & T_{\text {loop }} \sim & \frac{\left(\delta m^{2}\right)^{2}}{M^{2} M_{Z}^{2}}
\end{array} \quad U_{\text {loop }} \sim\left(\frac{\delta m^{2}}{M^{2}}\right)^{2}
$$

Results: multiplets with $T_{\text {tree }}>0$ and $Y \neq 0$
Take advantage of correlation between S and T to try to ease the constraint.

$$
\left.\begin{array}{lrl}
S_{\text {loop }} \sim-\frac{\delta m^{2}}{M^{2}} & T_{\text {loop }} \sim & \frac{\left(\delta m^{2}\right)^{2}}{M^{2} M_{Z}^{2}}
\end{array} U_{\text {loop }} \sim\left(\frac{\delta m^{2}}{M^{2}}\right)^{2}\right)
$$

Results: multiplets with $T_{\text {tree }}>0$ and $Y \neq 0$
Take advantage of correlation between S and T to try to ease the constraint.

$$
\left.\begin{array}{ccc}
S_{\text {loop }} \sim-\frac{\delta m^{2}}{M^{2}} & T_{\text {loop }} \sim & \frac{\left(\delta m^{2}\right)^{2}}{M^{2} M_{Z}^{2}}
\end{array} \quad U_{\text {loop }} \sim\left(\frac{\delta m^{2}}{M^{2}}\right)^{2}\right)
$$

