Higgs couplings and model discrimination

Heather Logan Carleton University

Cornell University December 5, 2008

Based on V. Barger, H.L., and G. Shaughnessy, arXiv:0812.nnnn

Outline

Motivation: Higgs measurements at colliders

Untangling the Higgs sector: a strategy

Framework

Catalogue of models and Higgs coupling patterns

Future directions

Higgs in the Standard Model

Key feature of the Standard Model Higgs mechanism: The same terms in the Lagrangian that give masses to particles also give them couplings to the Higgs proportional to that mass.

Heather Logan (Carleton U.)

Motivation: Higgs at the LHC

If the Higgs is Standard Model-like, LHC will discover it!

Higgs will be accessible in many production and decay channels: \rightarrow access to production and decay couplings. (GF = gluon fusion, WBF = weak boson fusion)

$GF \ gg \to H \to ZZ$	Inclusive $H ightarrow \gamma \gamma$				
WBF $qqH \rightarrow qqZZ$	WBF $qqH \rightarrow qq\gamma\gamma$				
	$t\overline{t}H$, $H o \gamma\gamma$				
$GF \ gg \to H \to WW$	WH , $H o \gamma\gamma$				
WBF $qqH \rightarrow qqWW$	$egin{array}{ccc} ZH & H ightarrow \gamma\gamma \end{array}$				
$t\overline{t}H$, $H ightarrow WW$					
WH, $H o WW$	$t\overline{t}H$, $H ightarrow b\overline{b}$ (?)				
	WH , $H ightarrow b\overline{b}$ (?)				

WBF $qqH \rightarrow qq\tau\tau$

Higgs couplings and model discrimination

Heather Logan (Carleton U.)

Measure rates in each channel: test the SM coupling pattern. Rate measurement gives you $\sigma \times BR = \sigma \times \Gamma/\Gamma_{tot}$.

Zeppenfeld, hep-ph/0203123 LHC, 200 fb⁻¹ (except 300 fb⁻¹ for $ttH, H \rightarrow bb, WH, H \rightarrow bb$). Heather Logan (Carleton U.) Higgs couplings

If there's a discrepancy, we want to know where it comes from.

Take ratios of rates with same production and different decays: production cross section and Higgs total width cancel out.

LHC, 200 fb⁻¹ (except 300 fb⁻¹ for $ttH, H \rightarrow bb$, $WH, H \rightarrow bb$). Zeppenfeld, hep-ph/0203123 Heather Logan (Carleton U.) Higgs couplings and model discrimination Can we extract independent measurements of each Higgs coupling?

Difficulties:

- No measurement of total production rate.

- Some decays cannot be directly observed at LHC due to backgrounds: $H \rightarrow gg$, $H \rightarrow$ light quarks, etc.

Incomplete data: can't extract individual couplings in a modelindependent way.

Multi-dimensional "error ellipsoid" is unbounded in some directions.

Observation of Higgs production

 \longrightarrow lower bound on production couplings

 \longrightarrow lower bound on Higgs total width.

But: no model-independent upper bound on Higgs total width.

To make progress, have to make some theoretical assumptions.

Heather Logan (Carleton U.)

Consider Higgs models containing only SU(2) doublets/singlets.

- hWW, hZZ couplings related by custodial SU(2).
- hWW, hZZ couplings bounded from above by SM values.

This is a mild assumption!

- True in most good models: MSSM, NMSSM, 2HDM, etc.
- Larger Higgs multiplets stringently constrained by ρ parameter.

Theoretical constraint $\Gamma_V \leq \Gamma_V^{SM}$ \oplus measurement of Γ_V^2/Γ_{tot} from WBF $\rightarrow H \rightarrow VV$

 \rightarrow upper bound on Higgs total width.

...slicing the error ellipsoid...

Combine with lower bound on Higgs total width from production couplings.

- Interplay constrains remaining Higgs couplings.
- Make no assumptions about unexpected/unobserved Higgs decay modes.

Heather Logan (Carleton U.)

Must include the appropriate systematic uncertainties:

5% overall Luminosity normalization

Theory uncertainties on Higgs production: 20% Gluon Fusion 15% ttH assoc. prod. 7% WH, ZH assoc. prod. 4% Weak Boson Fusion

Reconstruction/identification efficiencies:

2% leptons 2% photons 3% b quarks 3% τ jets 5% forward tagging jets and veto jets (for WBF)

Background extrapolation from side-bands (shape):

from 0.1% for $H \rightarrow \gamma \gamma$ to 5% for $H \rightarrow WW$ and $H \rightarrow \tau \tau$ to 10% for $H \rightarrow b\overline{b}$

Heather Logan (Carleton U.)

Result: fit of Higgs couplings-squared

Dührssen, Heinemeyer, H.L., Rainwater, Weiglein & Zeppenfeld, hep-ph/0406323[2004 study; update needed: $ttH, H \rightarrow b\overline{b}$, GF theory uncertainty, new channels, ...]Heather Logan (Carleton U.)Higgs couplings and model discrimination

Another approach: fit observed rates to a particular model. Example: chi-squared fits in MSSM, m_h^{max} scenario

Dührssen, Heinemeyer, H.L., Rainwater, Weiglein & Zeppenfeld, hep-ph/0406323

Heather Logan (Carleton U.)

Motivation: Higgs at the ILC

- Nice clean environment – no large QCD backgrounds.

 Well-known initial state – no parton distributions; energy/momentum of initial state known.

E. Accomando et al., Phys.Rept.299, 1 (1998)

Heather Logan (Carleton U.)

Model-independent technique: Z recoil

Use 4-momentum conservation to reconstruct Higgs events looking only at the recoiling Z.

Initial state: $e^- \longrightarrow \star \longleftarrow e^+$ $p(e^-) = (E_{cm}/2, 0, 0, E_{cm}/2), \quad p(e^+) = (E_{cm}/2, 0, 0, -E_{cm}/2)$ Initial 4-momentum = $p(e^-) + p(e^+) = (E_{cm}, 0, 0, 0)$

Final state: $Z \leftarrow \star \rightarrow H$ Use Z decays to dileptons $(e^+e^- \text{ or } \mu^+\mu^-)$. Measure the 4-momenta of the Z decay leptons: $p(\ell^-)$ and $p(\ell^+)$. Require that $p(\ell^-)$ and $p(\ell^+)$ reconstruct the Z:

 $[p(\ell^-) + p(\ell^+)]^2 = M_Z^2 \quad \text{(within uncertainty)}$

Use energy-momentum conservation to get the Higgs 4-momentum:

 $p(Higgs) = p(e^{-}) + p(e^{+}) - p(\ell^{-}) - p(\ell^{+})$

"Recoil mass" is $[p(Higgs)]^2 = M_H^2$.

Heather Logan (Carleton U.)

H.J. Schreiber et al., DESY-ECFA Conceptual LC Design Report (1997)

Recoil mass:
$$[p(Higgs)]^2 = M_H^2$$
.

See a Higgs mass peak in the Z recoil spectrum.

- Count events in the recoil Higgs mass peak: get the ZH cross section.
- Count Higgs decay products in the recoil Higgs mass peak: get the Higgs branching ratios.

Model-independent!

- ZH cross section measurement does not depend on Higgs decay mode.
- BR measurements do not depend on production cross-section assumptions.

Heather Logan (Carleton U.)

Next, measure HWW coupling in WW fusion. Look for (e.g.) Higgs $\longrightarrow b\overline{b}$ plus missing energy: $ZH, Z \rightarrow \nu\overline{\nu}$ and WW fusion $\rightarrow H$.

Measure $WW \rightarrow H$ cross section; from this get WWH coupling.

- \rightarrow predict $H \rightarrow WW$ partial width
- \rightarrow Combine with BR($H \rightarrow WW$) to extract total width
- \rightarrow Extract all the other Higgs couplings from respective BRs

Totally model independent!

Heather Logan (Carleton U.)

Measure Higgs branching ratios to high precision:

Table 1: Summary of expected precisions on Higgs boson branching ratios from existing studies within the ECFA/DESY workshops. (a) for 500 fb⁻¹ at 350 GeV; (b) for 500 fb⁻¹ at 500 GeV; (c) for 1 ab⁻¹ at 500 GeV; (d) for 1 ab⁻¹ at 800 GeV; (e) as for (a), but method described in [35] (see text).

Mass(GeV)	120	140	160	180	200	220	240	280	320
Decay	Relative Precision (%)								
bb	2.4 (a) / 1.9 (e)	2.6 (a)	6.5 (a)	12.0 (d)	17.0 (d)	28.0 (d)			
$c\overline{c}$	8.3 (a) / 8.1 (e)	19.0 (a)							
au au	5.0 (a) / 7.1 (e)	8.0 (a)							
$\mu\mu$	30. (d)								
gg	5.5 (a) /4.8 (e)	14.0 (a)							
WW	5.1 (a) / 3.6 (e)	2.5 (a)	2.1 (a)		3.5 (b)		5.0 (b)	7.7 (b)	8.6 (b)
ZZ			16.9 (a)		9.9 (b)		10.8 (b)	16.2 (b)	17.3 (b)
$\gamma\gamma$	23.0 (b) / 35.0 (e)								
$\mathrm{Z}\gamma$		27.0 (c)							

review talk by K. Desch, hep-ph/0311092

With a 1 TeV ILC one does even better (larger cross sections, more statistics):

	Higgs Mass (GeV)							
	115	120	140	160	200			
$\Delta(\sigma \cdot B_{bb})/(\sigma \cdot B_{bb})$	± 0.003	± 0.004	± 0.005	± 0.018	± 0.090			
$\Delta(\sigma \cdot B_{WW})/(\sigma \cdot B_{WW})$	± 0.021	± 0.013	± 0.005	± 0.004	± 0.005			
$\Delta(\sigma \cdot B_{gg})/(\sigma \cdot B_{gg})$	± 0.014	± 0.015	± 0.025	± 0.145				
$\Delta(\sigma \cdot B_{\gamma\gamma})/(\sigma \cdot B_{\gamma\gamma})$	± 0.053	± 0.051	± 0.059	± 0.237				
$\Delta(\sigma \cdot B_{ZZ})/(\sigma \cdot B_{ZZ})$					± 0.013			

from Barklow, hep-ph/0312268

```
ILC at 1000 GeV, 1000 fb<sup>-1</sup>
-80% e^- polarization, +50% e^+ polarization
```

Enables model-independent extraction of Higgs couplings, constraints on non-SM Higgs.

Heather Logan (Carleton U.)

Example: chi-squared fits in MSSM, m_h^{max} scenario

- Baseline ILC: expt reach \sim 500 GeV, reduced \sim 10% by thy/param uncerts. - 1 TeV upgrade: expt reach \sim 1200 GeV, reduced \sim 2× to \sim 600 GeV by thy/param uncerts. [Droll & H.L., hep-ph/0612317]

Heather Logan (Carleton U.)

Untangling the Higgs sector

Once we have the data, what will we do with it?

Look for a deviation from the Standard Model:

- Procedure is well defined

- "Reach" for 2σ exclusion, 5σ discovery (of a deviation) has been studied in a number of BSM Higgs models

Next step, if a deviation is detected, is to determine which model.

- Do parameter fits to "usual suspects." MSSM, Type-II 2HDM, ...

- But consistency \neq discovery! How do we identify *all* models that are allowed or excluded by the data?

Need a strategy.

Strategy:

Our observables are the Higgs couplings.

Each model makes a prediction for all couplings, as a function of the model parameters.

free model params \leq # observables:

each model predicts a characteristic pattern of coupling relations.

Approach:

- Map out the "footprint" of every possible model in (multidimensional) observable space.

- Non-overlapping footprints mean models can be distinguished in principle.

- Experimental uncertainties determine how well in practice.

Heather Logan (Carleton U.)

"- Map out the "footprint" of every possible model in (multidimensional) observable space."

That's a tall order... let's start modestly.

Our approach: [V. Barger, H.L., and G. Shaughnessy, arXiv:0812.nnn]

- Consider a single neutral CP-even Higgs state h and study its couplings. Ignore possibility of CP violation.

- Consider only models containing SU(2) doublets and singlets.

- Require natural flavour conservation: restricts possible forms of Yukawa Lagrangian.

Subject to these restrictions, we can:

- make a complete catalogue of models;
- identify which ones are distinguishable in principle; and
- give explicit procedures to distinguish one from the other.

Heather Logan (Carleton U.)

Natural flavour conservation

Philosophy: absence of large Higgs-mediated flavour-changing neutral currents is due to symmetry structure of model, not tuning of parameters.

[Glashow & Weinberg, PRD15, 1958 (1977); Paschos, PRD15, 1966 (1977)]

SM: $\mathcal{L} \supset -Y_{ij}\bar{q}_{Ri}\Phi^{\dagger}Q_{Lj} \rightarrow -Y_{ij}v\,\bar{q}_{Ri}q_{Lj} - Y_{ij}h\bar{q}_{Ri}q_{Lj}$ Diagonalizing the fermion mass matrix $Y_{ij}v$ automatically diagonalizes the Higgs coupling matrix Y_{ij} : no FCNCs.

Two doublets: $\mathcal{L} \supset -Y_{1,ij}\bar{q}_{Ri}\Phi_1^{\dagger}Q_{Lj} - Y_{2,ij}\bar{q}_{Ri}\Phi_2^{\dagger}Q_{Lj}$ Mass term: $M_{ij} = Y_{1,ij}v_1 + Y_{2,ij}v_2$. Diagonalizing M_{ij} does not necessarily diagonalize Y_1 and Y_2 : Higgs-mediated FCNCs.

FCNCs can be avoided if the mass matrix in each sector of fermions (up-type quarks, down-type quarks, or charged leptons) comes from coupling to exactly one Higgs doublet.

Heather Logan (Carleton U.)

Examples:

Type-I 2HDM:

- One doublet Φ_f couples (and gives mass) to fermions; other doublet Φ_0 does not.

- Pattern can be enforced by Z_2 symmetry: $\Phi_0 \rightarrow -\Phi_0$, all other fields invariant (softly broken in Higgs potential).

Type-II 2HDM:

- One doublet Φ_u gives mass to up-type quarks; other doublet Φ_d gives mass to down-type quarks and charged leptons.

- Pattern can be enforced by Z_2 symmetry: $\Phi_u \rightarrow -\Phi_u$, $u_{Ri} \rightarrow -u_{Ri}$, all other fields invariant (again softly broken in Higgs potential).

- This pattern enforced in MSSM by holomorphicity of superpotential.

Note all 3 generations of fermions (of each sector) get their mass from the same Higgs.

Heather Logan (Carleton U.)

Imposing natural flavour conservation divides all possible multidoublet/singlet models into 5 classes.

1) Fermion masses from one doublet. Φ_f couples to all 3 sectors of fermions; any other doublets in the model do not couple to fermions.

2) Fermion masses from two doublets. There are 3 ways to assign the couplings:

a) Φ_u gives mass to up-type quarks; Φ_d gives mass to down-type quarks and charged leptons (Type-II 2HDM);

b) Φ_u gives mass to up-type quarks and charged leptons; Φ_d gives mass to down-type quarks (flipped 2HDM);

c) Φ_q gives mass to up- and down-type quarks; Φ_ℓ gives mass to charged leptons (lepton-specific 2HDM).

Any other doublets in the model do not couple to fermions.

3) Fermion masses from three doublets. Φ_u gives mass to uptype quarks; Φ_d gives mass to down-type quarks; Φ_ℓ gives mass to charged leptons. Any other doublets in the model do not couple to fermions.

Heather Logan (Carleton U.)

Observables

Notation: "barred couplings" are normalized to their SM values: $\bar{g}_x \equiv g_x/g_x^{SM}$ (coupling of h to $x\bar{x}$)

Couplings to fermions: natural flavour conservation implies barred couplings are the same for all 3 generations within a fermion sector: $\bar{g}_u = \bar{g}_c = \bar{g}_t$. Same for d, s, b; same for e, μ, τ .

Models containing only Higgs doublets and/or singlets: custodial symmetry implies $\bar{g}_W = \bar{g}_Z$.

Will not consider loop-induced couplings hgg, $h\gamma\gamma$, $hZ\gamma$: other new physics can run in the loop; alternatively other dim-6 ops from higher-scale physics can have a big effect.

On the other hand, these loop induced couplings are the only place where we can get at the relative signs of the tree-level (dim-4) couplings. These signs are usually important for "solving" the model.

4 primary observables: \bar{g}_W , \bar{g}_u , \bar{g}_d , \bar{g}_ℓ .

Heather Logan (Carleton U.)

Framework

Define $h = \sum_{i} a_i \phi_i$ where $\phi_i \equiv \phi_i^{0,r}$ is the properly normalized real neutral component of doublet Φ_i or singlet S_i . $a_i \equiv \langle h | \phi_i \rangle$.

- Ignore CP violation: a_i are real.

- Normalization: $\sum_i a_i^2 = 1$.

W and Z mass generation: the vev is shared among the doublets. Ignore singlet vevs: they do not affect h couplings.

Define $b_i \equiv v_i / v_{SM}$ (real and positive).

- Normalization: $\sum_i b_i^2 = 1$ to give correct W and Z masses. Sum runs over doublets only.

This can also be seen as a normalization condition: Define "Higgs basis" such that Φ_v carries v_{SM} : $\phi_v = \sum_i b_i \phi_i$ Then $b_i = \langle \phi_i | \phi_v \rangle$ and $\sum_i b_i^2 = 1$ is the normalization condition for ϕ_v .

Heather Logan (Carleton U.)

Higgs couplings

Couplings to W or Z pairs:

$$g_W^h = g_W^{SM} \langle h | \phi_v \rangle$$
 or $\bar{g}_W = \langle h | \phi_v \rangle$.

Inserting a complete set of states, $\bar{g}_W = \sum_i \langle h | \phi_i \rangle \langle \phi_i | \phi_v \rangle = \sum_i a_i b_i$. Sum runs over doublets only; $b_i \equiv 0$ for singlets.

Couplings to fermions:

$$\mathcal{L}_{Yuk} \supset -y_f \bar{f}_R \Phi_f^{\dagger} F_L + \text{h.c.}$$
 which gives $m_f = y_f v_f / \sqrt{2} = y_f b_f v_{SM} / \sqrt{2}$.
 $g_f^h = (y_f / \sqrt{2}) \langle h | \phi_f \rangle = (m_f / v_{SM}) (a_f / b_f) = g_f^{SM} (a_f / b_f)$
So $\bar{g}_f = a_f / b_f = \langle h | \phi_f \rangle / \langle \phi_v | \phi_f \rangle$.

Decoupling limit: $g_W = g_f = 1$ when $h = \phi_v$.

Heather Logan (Carleton U.)

Key feature 1: fermion couplings to h

1) Fermion masses from one doublet: $\bar{g}_u = \bar{g}_d = \bar{g}_\ell$

2) Fermion masses from two doublets:

a) Type-II 2HDM-like: $\bar{g}_d = \bar{g}_\ell \neq \bar{g}_u$

- b) Flipped 2HDM-like: $\bar{g}_u = \bar{g}_\ell \neq \bar{g}_d$
- c) Lepton-specific 2HDM-like: $\bar{g}_u = \bar{g}_d \neq \bar{g}_\ell$
- 3) Fermion masses from three doublets: $\bar{g}_u \neq \bar{g}_d \neq \bar{g}_\ell$

Key feature 2: relation between \bar{g}_W and the \bar{g}_f

Sheds light on relation between ϕ_v and ϕ_f : are there extra doublets that do not couple to fermions?

Heather Logan (Carleton U.)

Fermion masses from one doublet

1. SM

- 2. SM + singlet(s)
- 3. 2HDM-I (the SM plus a doublet)
- 4. 2HDM-I + singlet(s)
- 5. 2HDM-I + extra doublet(s)

Heather Logan (Carleton U.)

SM + singlet(s)

Field content: 1 doublet Φ_f , 1 singlet S.

Constraints:
$$b_f^2 = 1$$
; $a_f^2 + a_s^2 = 1 \rightarrow a_f = \sqrt{1 - a_s^2} \equiv \sqrt{1 - \delta^2}$.

Couplings:
$$\bar{g}_W = a_f b_f = \sqrt{1-\delta^2}, \ \bar{g}_f = a_f/b_f = \sqrt{1-\delta^2}$$

Key signature: $\bar{g}_W = \bar{g}_f$.

Inverse relations: $a_f = \bar{g}_W = \bar{g}_f$, $a_s = \sqrt{1 - a_f^2}$.

Multiple singlets: $a_s^2 \rightarrow \sum a_{s_i}^2$. No change in any h couplings. Can't determine number of singlets from h couplings.

2HDM-I

Field content: 1 doublet Φ_f couples to fermions; 2nd doublet Φ_0 does not.

Constraints: $a_f^2 + a_0^2 = 1$; $b_f^2 + b_0^2 = 1$

Couplings: $\bar{g}_W = a_f b_f + a_0 b_0$; $\bar{g}_f = a_f / b_f$

Key signature:
$$\bar{g}_W \neq \bar{g}_f$$
;
 $\bar{g}_u = \bar{g}_d = \bar{g}_\ell \equiv \bar{g}_f$.

Notation: $\tan \beta \equiv v_f / v_0 = b_f / b_0$, $\delta \equiv \cos(\beta - \alpha) = a_f b_0 - a_0 b_f$.

$$\bar{g}_W = \sqrt{1 - \delta^2}$$

$$\bar{g}_f = \sqrt{1 - \delta^2} + \cot \beta \ \delta$$

Plot: $\tan \beta = 5$

2HDM-I

Inverse relations:

$$b_{f} = \left[\frac{1 - \bar{g}_{W}^{2}}{1 + \bar{g}_{f}^{2} - 2\bar{g}_{W}\bar{g}_{f}}\right]^{1/2}, \qquad b_{0} = \sqrt{1 - b_{f}^{2}}$$
$$a_{f} = b_{f}\bar{g}_{f}, \qquad a_{0} = \frac{\bar{g}_{W} - b_{f}^{2}\bar{g}_{f}}{\sqrt{1 - b_{f}^{2}}}$$

Get a full, unique solution if relative signs of \bar{g}_W and \bar{g}_f are known.

If relative signs are not known, solution is 2-fold degenerate.

2HDM-I

Note "footprints":

- 2HDM-I populates the plane.

- SM + singlet(s) collapses to $\tan \beta \to \infty$ line (corresponds to $b_0 = 0$).

Heather Logan (Carleton U.)

2HDM-I + singlet(s)

Constraints:
$$a_f^2 + a_0^2 + a_s^2 = 1$$
; $b_f^2 + b_0^2 = 1$
 $a_0^2 \to \sum a_{0i}^2$
Couplings: $\bar{g}_W = a_f b_f + a_0 b_0$; $\bar{g}_f = a_f / b_f$

5 parameters but only 4 equations: no unique solution!

Parameterize singlet mixing: $\xi \equiv 1 - a_s^2 = a_f^2 + a_0^2$

$$\bar{g}_W = \sqrt{\xi} \sqrt{1 - \delta^2}$$
$$\bar{g}_f = \sqrt{\xi} \left[\sqrt{1 - \delta^2} + \cot \beta \ \delta \right]$$

Compare 2HDM-I:

- Footprints are the same.
- Can't tell the models apart based on
- h couplings.

- Inverse relations will give a solution but it will be wrong.

Heather Logan (Carleton U.)

2HDM-I + extra doublet(s)

$$\begin{split} h &= a_f \phi_f + \sum_i a_{0i} \phi_{0i} = a_f \phi_f + a'_0 \phi'_0, \quad a_f^2 + a'_0^2 = 1. \\ b'_0 &\equiv \langle \phi'_0 | \phi_v \rangle \quad \to \quad b_f^2 + b'_0^2 = \omega^2 \le 1 \end{split}$$

Some vev can be carried by the combination of ϕ_{0i} orthogonal to h ("vev sharing"). 5 params, 4 eqns \rightarrow no unique solution.

$$\overline{g}_W = \omega \sqrt{1 - \delta^2}$$

$$\overline{g}_f = (1/\omega) \left[\sqrt{1 - \delta^2} + \cot \beta \ \delta \right]$$

Compare 2HDM-I:

- Footprints are the same.
- Can't tell the models apart based on h couplings.
- Inverse relations will give a solution but it will be wrong.

Higgs couplings and model discrimination

Heather Logan (Carleton U.)

Fermion masses from two doublets

- 3 ways to couple fermions:
 - 1. 2HDM-II
 - 2. Flipped 2HDM
 - 3. Lepton-specific 2HDM

Extensions:

- singlet(s)
- extra doublet(s)

MSSM (violation of natural flavour conservation assumption)

Heather Logan (Carleton U.)

2HDM-II

Field content: 1 doublet Φ_u gives mass to up-type quarks; 2nd doublet Φ_d gives mass to down-type quarks and charged leptons.

Constraints: $a_u^2 + a_d^2 = 1$; $b_u^2 + b_d^2 = 1$

Couplings: $\bar{g}_W = a_u b_u + a_d b_d$; $\bar{g}_u = a_u / b_u$; $\bar{g}_d = \bar{g}_\ell = a_d / b_d$

Key signature: $\bar{g}_d = \bar{g}_\ell \neq \bar{g}_u$

Notation:
$$\tan \beta \equiv v_u / v_d = b_u / b_d$$
,
 $\delta \equiv \cos(\beta - \alpha) = a_u b_d - a_d b_u$.

$$\begin{split} \bar{g}_W &= \sqrt{1 - \delta^2} \\ \bar{g}_u &= \sqrt{1 - \delta^2} + \cot \beta \ \delta \\ \bar{g}_d &= \bar{g}_\ell = \sqrt{1 - \delta^2} - \tan \beta \ \delta \end{split}$$

Plot: $\tan \beta = 5$

2HDM-II

3 different couplings $(\bar{g}_W, \bar{g}_u, \bar{g}_d)$ controlled by only 2 parameters (tan β, δ): model occupies a 2-dim subspace of 3-dim coupling space.

Key signature: "pattern relation" [Ginzburg, Krawczyk & Osland 2001] $P_{ud} \equiv \bar{g}_W(\bar{g}_u + \bar{g}_d) - \bar{g}_u \bar{g}_d = 1$ equiv patt reln $P_{u\ell} = 1$

Heather Logan (Carleton U.)

2HDM-II

Inverse relations:

$$b_{u} = \left[\frac{\bar{g}_{W} - \bar{g}_{d}}{\bar{g}_{u} - \bar{g}_{d}}\right]^{1/2} = \left[\frac{1 - \bar{g}_{d}^{2}}{\bar{g}_{u}^{2} - \bar{g}_{d}^{2}}\right]^{1/2} \qquad a_{u} = b_{u}\bar{g}_{u}$$
$$b_{d} = \left[\frac{\bar{g}_{W} - \bar{g}_{u}}{\bar{g}_{d} - \bar{g}_{u}}\right]^{1/2} = \left[\frac{1 - \bar{g}_{u}^{2}}{\bar{g}_{d}^{2} - \bar{g}_{u}^{2}}\right]^{1/2} \qquad a_{d} = b_{d}\bar{g}_{d}$$

Unique solution for b_u, b_d even if relative signs of couplings are not known (used pattern relation).

2HDM-II + singlet(s)

Constraints:
$$a_f^2 + a_0^2 + a_s^2 = 1$$
; $b_f^2 + b_0^2 = 1$ Multiple singlets:
 $a_0^2 \rightarrow \sum a_{0i}^2$

Couplings: $\bar{g}_W = a_f b_f + a_0 b_0$; $\bar{g}_f = a_f / b_f$

Parameterize singlet mixing: $\xi \equiv 1 - a_s^2 = a_f^2 + a_0^2$

Couplings:

$$\bar{g}_W = \sqrt{\xi} \sqrt{1 - \delta^2}$$

$$\bar{g}_u = \sqrt{\xi} \left[\sqrt{1 - \delta^2} + \cot \beta \ \delta \right]$$

$$\bar{g}_d = \bar{g}_\ell = \sqrt{\xi} \left[\sqrt{1 - \delta^2} - \tan \beta \ \delta \right]$$

Distinguishable from 2HDM-II using pattern relation!

$$P_{ud} \equiv \bar{g}_W(\bar{g}_u + \bar{g}_d) - \bar{g}_u\bar{g}_d = \xi \le 1$$

"Footprint": model fills volume in 3-dim coupling space between 2HDM-II surface ($P_{ud} = 1$) and origin ($\bar{g}_W = \bar{g}_u = \bar{g}_d = 0$).

Heather Logan (Carleton U.)

2HDM-II + singlet(s)

Inverse relations:

$$b_{u} = \left[\frac{\bar{g}_{W} - \bar{g}_{d}}{\bar{g}_{u} - \bar{g}_{d}}\right]^{1/2} = \left[\frac{\xi - \bar{g}_{d}^{2}}{\bar{g}_{u}^{2} - \bar{g}_{d}^{2}}\right]^{1/2} \qquad a_{u} = b_{u}\bar{g}_{u}$$

$$b_{d} = \left[\frac{\bar{g}_{W} - \bar{g}_{u}}{\bar{g}_{d} - \bar{g}_{u}}\right]^{1/2} = \left[\frac{\xi - \bar{g}_{u}^{2}}{\bar{g}_{d}^{2} - \bar{g}_{u}^{2}}\right]^{1/2} \qquad a_{d} = b_{d}\bar{g}_{d}$$

$$a_{s} = \sqrt{1 - \xi}$$

Unique solutions for all parameters if relative signs of couplings are known (use pattern relation to get ξ).

If signs are not known, get discrete ambiguities.

Heather Logan (Carleton U.)

2HDM-II + extra doublet(s)

Constraints: $a_u^2 + a_d^2 + a_0^2 = 1$; $b_u^2 + b_d^2 + b_0^2 = 1$

Couplings: $\bar{g}_W = a_u b_u + a_d b_d + a_0 b_0$; $\bar{g}_u = a_u / b_u$; $\bar{g}_d = \bar{g}_\ell = a_d / b_d$

Physical picture:

Heather Logan (Carleton U.)

2HDM-II + extra doublet(s)

Limiting cases:

1) When $b_0 \to 0$, 3rd doublet "acts like a singlet": it can mix into h, but does not couple to fermions or gauge bosons. Duplicates 2HDM-II + singlet(s) $(P_{ud} \le 1)$: $\bar{g}_W = \sqrt{\xi} \sqrt{1 - \delta^2} \qquad \bar{g}_u = \sqrt{\xi} \left[\sqrt{1 - \delta^2} + \cot \beta \ \delta \right]$ $\bar{g}_d = \bar{g}_\ell = \sqrt{\xi} \left[\sqrt{1 - \delta^2} - \tan \beta \ \delta \right]$

2) When $a_0 \rightarrow 0$, 3rd doublet serves to reduce the vev carried by the doublets that constitute h. Similar to 2HDM-I + extra doublet(s):

$$\begin{split} \bar{g}_W &= \omega \sqrt{1 - \delta^2} & \bar{g}_u = (1/\omega) \left[\sqrt{1 - \delta^2} + \cot \beta \ \delta \right] \\ \bar{g}_d &= \bar{g}_\ell = (1/\omega) \left[\sqrt{1 - \delta^2} - \tan \beta \ \delta \right] \\ P_{ud} \text{ can be } > 1 \text{ or } < 0. \end{split}$$

Footprint is larger than 2HDM-II + singlet(s).

Heather Logan (Carleton U.)

2HDM-II + extra doublet(s)

Couplings:

$$\bar{g}_W = \sqrt{1 - \delta^2}$$
$$\bar{g}_u = \sqrt{1 - \delta^2} + \delta \left[\sin \gamma \frac{\cos \beta}{\cos \Omega} - \cos \gamma \tan \Omega \right]$$
$$\bar{g}_d = \bar{g}_\ell = \sqrt{1 - \delta^2} + \delta \left[-\sin \gamma \frac{\tan \beta}{\cos \Omega} - \cos \gamma \tan \Omega \right]$$

Notation:

 $\tan \beta = v_u/v_d = b_u/b_d$ $\sin \Omega = b_0$ $\delta = \sin(\text{angle between } h \text{ and } \phi_v)$ $\gamma = \text{azimuthal angle of } h \text{ about } \phi_v \text{ axis}$

Heather Logan (Carleton U.)

Other fermion coupling structures

[Barnett et al; Grossman]

2HDM-II:
$$\Phi_u \leftrightarrow u$$
, $\Phi_d \leftrightarrow d, \ell$
Pattern reln: $P_{ud} \equiv \overline{g}_W(\overline{g}_u + \overline{g}_d) - \overline{g}_u \overline{g}_d = 1 = P_{u\ell}$

Flipped 2HDM: $\Phi_u \leftrightarrow u, \ell, \quad \Phi_d \leftrightarrow d$ Pattern reln: $P_{ud} \equiv \overline{g}_W(\overline{g}_u + \overline{g}_d) - \overline{g}_u \overline{g}_d = 1 = P_{\ell d}$

Lepton-specific 2HDM: $\Phi_q \leftrightarrow u, d, \quad \Phi_\ell \leftrightarrow \ell$ Pattern reln: $P_{u\ell} \equiv \overline{g}_W(\overline{g}_u + \overline{g}_\ell) - \overline{g}_u \overline{g}_\ell = 1 = P_{d\ell}$

Heather Logan (Carleton U.)

At tree level, MSSM Higgs sector = 2HDM-II.

Beyond tree level, sbottom-gluino and stop-chargino loops can induce a coupling of ϕ_u to $b\overline{b}$. Violates natural flavour conservation.

Correction to *b* quark mass parameterized as $m_b = (y_b v_{SM} / \sqrt{2}) \cos \beta (1 + \Delta_b)$

 $hb\bar{b}$ coupling is modified compared to 2HDM-II:

$$\bar{g}_b = \sqrt{1 - \delta^2} - \tan\beta \delta \left[\frac{1 - \cot^2 \beta \Delta_b}{1 + \Delta_b} \right]$$

SUSY corrections to other couplings are small, neglect them: $\bar{g}_W = \sqrt{1 - \delta^2}, \quad \bar{g}_u = \sqrt{1 - \delta^2} + \cot \beta \, \delta,$ $\bar{g}_\ell = \sqrt{1 - \delta^2} - \tan \beta \, \delta$

Heather Logan (Carleton U.)

MSSM

Key features:

1) $\bar{g}_b \neq \bar{g}_\ell$

2) But, 2HDM-II pattern relation still holds among W, u, and ℓ couplings: $P_{u\ell} = \bar{g}_W(\bar{g}_u + \bar{g}_\ell) - \bar{g}_u \bar{g}_\ell = 1$.

Inverse relations:

- Solve for 2HDM-II parameters using \bar{g}_W , \bar{g}_u , and \bar{g}_ℓ .
- Get Δ_b from $\Delta_b = (\bar{g}_b \bar{g}_\ell)/(\bar{g}_u \bar{g}_b)$.

Heather Logan (Carleton U.)

Fermion masses from three doublets

- 1. Democratic 3HDM
- 2. 3HDM-D + singlet(s)
- 3. 3HDM-D + extra doublet(s)

Field content:

1 doublet Φ_u gives mass to up-type quarks; 2nd doublet Φ_d gives mass to down-type quarks; 3rd doublet Φ_ℓ gives mass to charged leptons.

Constraints:
$$a_u^2 + a_d^2 + a_\ell^2 = 1$$
, $b_u^2 + b_d^2 + b_\ell^2 = 1$

Couplings:
$$\overline{g}_W = a_u b_u + a_d b_d + a_\ell b_\ell$$

 $\overline{g}_u = a_u/b_u$, $\overline{g}_d = a_d/b_d$, $\overline{g}_\ell = a_\ell/b_\ell$

One key feature: $\bar{g}_u \neq \bar{g}_d \neq \bar{g}_\ell$ and MSSM pattern relation is not satisfied.

Analysis quite similar to 2HDM-II + extra doublet:

Couplings:

$$\begin{split} \bar{g}_W &= \sqrt{1 - \delta^2} \\ \bar{g}_u &= \sqrt{1 - \delta^2} + \delta \left[\sin \gamma \frac{\cos \beta}{\cos \Omega} - \cos \gamma \tan \Omega \right] \\ \bar{g}_d &= \sqrt{1 - \delta^2} + \delta \left[-\sin \gamma \frac{\tan \beta}{\cos \Omega} - \cos \gamma \tan \Omega \right] \\ \bar{g}_\ell &= \sqrt{1 - \delta^2} + \delta \left[\cos \gamma \cot \Omega \right] \end{split}$$

Notation: $\tan \beta = v_u/v_d = b_u/b_d$ $\sin \Omega = b_\ell$ $\delta = \sin(\text{angle between } h \text{ and } \phi_v)$ $\gamma = \text{azimuthal angle of } h \text{ about } \phi_v \text{ axis}$

Plot:
$$\tan \beta = 5$$
, $b_{\ell} = 0.2$, $a_{\ell} = 1/\sqrt{2}$

Heather Logan (Carleton U.)

Inverse relations:

$$b_{u} = \left[\frac{1 - \bar{g}_{W}(\bar{g}_{d} + \bar{g}_{\ell}) + \bar{g}_{d}\bar{g}_{\ell}}{(\bar{g}_{u} - \bar{g}_{d})(\bar{g}_{u} - \bar{g}_{\ell}}\right]^{1/2}$$

$$b_{d} = \left[\frac{1 - \bar{g}_{W}(\bar{g}_{u} + \bar{g}_{\ell}) + \bar{g}_{u}\bar{g}_{\ell}}{(\bar{g}_{d} - \bar{g}_{u})(\bar{g}_{d} - \bar{g}_{\ell})}\right]^{1/2}$$

$$b_{\ell} = \left[\frac{1 - \bar{g}_{W}(\bar{g}_{u} + \bar{g}_{d}) + \bar{g}_{u}\bar{g}_{d}}{(\bar{g}_{\ell} - \bar{g}_{u})(\bar{g}_{\ell} - \bar{g}_{d})}\right]^{1/2}$$

$$a_{u} = b_{u}\bar{g}_{u}, \qquad a_{d} = b_{d}\bar{g}_{d}, \qquad a_{\ell} = b_{\ell}\bar{g}_{\ell}$$

If relative signs of couplings are known then the solution is unique; otherwise there are discrete ambiguities.

Heather Logan (Carleton U.)

Key to this analysis is the inverse relations for b_i in terms of couplings in democratic 3HDM.

Consider the combinations of couplings:

$$X_{u} = \begin{bmatrix} \frac{1 - \bar{g}_{W}(\bar{g}_{d} + \bar{g}_{\ell}) + \bar{g}_{d}\bar{g}_{\ell}}{(\bar{g}_{u} - \bar{g}_{d})(\bar{g}_{u} - \bar{g}_{\ell})} \end{bmatrix}$$
$$X_{d} = \begin{bmatrix} \frac{1 - \bar{g}_{W}(\bar{g}_{u} + \bar{g}_{\ell}) + \bar{g}_{u}\bar{g}_{\ell}}{(\bar{g}_{d} - \bar{g}_{u})(\bar{g}_{d} - \bar{g}_{\ell})} \end{bmatrix}$$
$$X_{\ell} = \begin{bmatrix} \frac{1 - \bar{g}_{W}(\bar{g}_{u} + \bar{g}_{d}) + \bar{g}_{u}\bar{g}_{d}}{(\bar{g}_{\ell} - \bar{g}_{u})(\bar{g}_{\ell} - \bar{g}_{d})} \end{bmatrix}$$

By construction, $X_u + X_d + X_\ell = 1$.

In democratic 3HDM, $X_i = b_i^2$, so $0 \le X_i \le 1$.

Heather Logan (Carleton U.)

In democratic 3HDM + singlet,

$$X_{u} = b_{u}^{2} + \frac{a_{s}^{2}}{(\bar{g}_{u} - \bar{g}_{d})(\bar{g}_{u} - \bar{g}_{\ell})}$$

$$X_{d} = b_{d}^{2} + \frac{a_{s}^{2}}{(\bar{g}_{d} - \bar{g}_{u})(\bar{g}_{d} - \bar{g}_{\ell})}$$

$$X_{\ell} = b_{\ell}^{2} + \frac{a_{s}^{2}}{(\bar{g}_{\ell} - \bar{g}_{u})(\bar{g}_{\ell} - \bar{g}_{d})}$$

In part of the parameter space one of the X_i can be negative. (Exactly one of the three denominators must be negative.)

This means the footprint of this model is larger than that of the democratic 3HDM: the models are distinguishable (in part of the parameter space).

(Adding additional singlets: $a_s^2 \rightarrow \sum a_{si}^2$, footprint stays the same.)

Heather Logan (Carleton U.)

If one of the X_i is negative, we can also get a lower bound on a_s (the singlet content of h).

Define

$$Y = \begin{cases} (\overline{g}_u - \overline{g}_d)(\overline{g}_u - \overline{g}_\ell)X_u & \text{if } X_u < 0, \\ (\overline{g}_d - \overline{g}_u)(\overline{g}_d - \overline{g}_\ell)X_d & \text{if } X_d < 0, \\ (\overline{g}_\ell - \overline{g}_u)(\overline{g}_\ell - \overline{g}_d)X_\ell & \text{if } X_\ell < 0. \end{cases}$$

Then $a_s^2 \ge Y$.

 $Y = a_s^2 + (\text{denom})b_i^2 = a_s^2 - |\text{denom}|b_i^2 \le a_s^2; \quad 0 \le Y \le 1.$

Heather Logan (Carleton U.)

In democratic 3HDM + extra doublet,

$$X_{u} = b_{u}^{2} + \frac{a_{0}^{2} + b_{0}^{2}\bar{g}_{d}\bar{g}_{\ell} - a_{0}b_{0}(\bar{g}_{d} + \bar{g}_{\ell})}{(\bar{g}_{u} - \bar{g}_{d})(\bar{g}_{u} - \bar{g}_{\ell})}$$

$$X_{d} = b_{d}^{2} + \frac{a_{0}^{2} + b_{0}^{2}\bar{g}_{u}\bar{g}_{\ell} - a_{0}b_{0}(\bar{g}_{u} + \bar{g}_{\ell})}{(\bar{g}_{d} - \bar{g}_{u})(\bar{g}_{d} - \bar{g}_{\ell})}$$

$$X_{\ell} = b_{\ell}^{2} + \frac{a_{0}^{2} + b_{0}^{2}\bar{g}_{u}\bar{g}_{\ell} - a_{0}b_{0}(\bar{g}_{u} + \bar{g}_{d})}{(\bar{g}_{\ell} - \bar{g}_{u})(\bar{g}_{\ell} - \bar{g}_{d})}$$

- If $b_0 \rightarrow 0$, this reduces to same form as 3HDM + singlet. - If $b_0 \neq 0$, numerator of 2nd term can be < 0 or > 1.

Define Y as before. In part of parameter space can get Y < 0; in other parts can get Y > 1. Impossible in 3HDM + singlet.

Thus footprint of 3HDM + extra doublet is larger than the other models.

(Adding even more doublets or singlets: footprint stays the same.)

Heather Logan (Carleton U.)

Future directions

1) Experimental prospects.

We studied the theoretical "footprints": which models can be distinguished *in principle*.

Obvious next step: how well will experiment do?

2) Going beyond restrictive assumptions.

- SU(2) multiplets larger than doublets – must be careful with ρ parameter. Triplet models, ...

- Models without natural flavour conservation – must be careful with FCNCs. Type-III 2HDM, "Private Higgs," ...

- Impact of radiative corrections?

3) Adding observables from other Higgs states.

- Additional neutral CP-even states (coupling sum rules!)
- CP-odd states; CP mixtures
- Charged Higgses

Heather Logan (Carleton U.)