

Charged Higgs phenomenology beyond the MSSM

Heather Logan

Carleton University

TRIUMF January 20, 2010

Based on:

H.E.L. and D. MacLennan, Phys. Rev. D79, 115022 (2009)

H.E.L. and D. MacLennan, arXiv:100x.xxxx

S.M. Davidson and H.E.L., Phys. Rev. D80, 095008 (2009) + in progress

Outline

Introduction: the Higgs sector

Charged Higgs in the MSSM and experimental studies

Other models:

- Lepton-specific two Higgs doublet model
- Flipped two Higgs doublet model
- Two-doublet model for neutrino masses

Conclusions

Introduction: the Standard Model Higgs mechanism on one slide

Introduce a single complex SU(2)-doublet scalar field Φ . Scalar potential $V = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$ triggers electroweak symmetry breaking:

$$\Phi = \begin{pmatrix} \phi^+ \\ (v + \phi^{0,r} + i\phi^{0,i})/\sqrt{2} \end{pmatrix} \quad \text{with } v = \sqrt{\frac{\mu^2}{\lambda}}.$$

Physical Higgs is $h^0 = \phi^{0,r}$.

Would-be Goldstone bosons are $G^0 = \phi^{0,i}$, $G^+ = \phi^+$ and can be gauged away ("eaten by the W and Z").

Covariant derivative term $(\mathcal{D}^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)$ gives weak boson masses $M_W^2=\frac{g^2v^2}{4}$, $M_Z^2=\frac{(g^2+g'^2)v^2}{4}$.

Yukawas $\mathcal{L}=-y_{ij}^d \bar{d}_{Ri} \Phi Q_{Lj}-y_{ij}^u \bar{u}_{Ri} \tilde{\Phi} Q_{Lj}-y_{ij}^\ell \bar{e}_{Ri} \Phi L_{Lj}+h.c.$ give fermion mass matrices $m_{ij}^f=y_{ij}^f v/\sqrt{2}$; diagonalizing gives fermion masses (with y_{ij}^f diagonalized automatically); CKM matrix from mismatch between u_L and d_L rotations.

Two automatic features of the Standard Model:

1) Custodial symmetry preserved at tree level:

$$\frac{M_W}{M_Z\cos\theta_W}=1 \qquad \text{ where } \cos\theta_W\equiv\frac{g}{\sqrt{g^2+g'^2}}.$$

Maintained in extended Higgs sectors if they contain only doublets (and singlets).

Two-doublet models: covariant derivative terms become

$$\mathcal{L} \supset (\mathcal{D}^{\mu} \Phi_1)^{\dagger} (D_{\mu} \Phi_1) + (\mathcal{D}^{\mu} \Phi_2)^{\dagger} (D_{\mu} \Phi_2)$$

Gauge boson masses become

$$M_W^2 = \frac{g^2 v_1^2}{4} + \frac{g^2 v_2^2}{4}, \qquad M_Z^2 = \frac{(g^2 + g'^2)v_1^2}{4} + \frac{(g^2 + g'^2)v_2^2}{4}$$

Preserves
$$\frac{M_W}{M_Z \cos \theta_W} = 1$$
; requires $v_1^2 + v_2^2 = v_{SM}^2$.

With two doublets we have four more scalar degrees of freedom:

$$\begin{split} \Phi_1 = \left(\begin{array}{c} \phi_1^+ \\ (v_1 + \phi_1^{0,r} + i\phi_1^{0,i})/\sqrt{2} \end{array} \right) & \Phi_2 = \left(\begin{array}{c} \phi_2^+ \\ (v_2 + \phi_2^{0,r} + i\phi_2^{0,i})/\sqrt{2} \end{array} \right) \\ \text{with } v_1^2 + v_2^2 = v_{\text{SM}}^2 = 4M_W^2/g^2 \text{ and } v_2/v_1 \equiv \tan\beta. \end{split}$$

Mass eigenstates:

$$h^{0} = -\sin \alpha \, \phi_{1}^{0,r} + \cos \alpha \, \phi_{2}^{0,r}, \qquad H^{0} = \cos \alpha \, \phi_{1}^{0,r} + \sin \alpha \, \phi_{2}^{0,r}$$

$$A^{0} = -\sin \beta \, \phi_{1}^{0,i} + \cos \beta \, \phi_{2}^{0,i}, \qquad G^{0} = \cos \beta \, \phi_{1}^{0,i} + \sin \beta \, \phi_{2}^{0,i}$$

$$H^{+} = -\sin \beta \, \phi_{1}^{+} + \cos \beta \, \phi_{2}^{+}, \qquad G^{+} = \cos \beta \, \phi_{1}^{+} + \sin \beta \, \phi_{2}^{+}$$

Can rotate by angle β to "Higgs basis": $s \equiv \sin(\beta - \alpha)$, $c \equiv \cos(\beta - \alpha)$

$$\begin{pmatrix} G^{+} \\ (v_{SM} + (sh^{0} + cH^{0}) + iG^{0})/\sqrt{2} \end{pmatrix} \qquad \begin{pmatrix} H^{+} \\ ((ch^{0} - sH^{0}) + iA^{0})/\sqrt{2} \end{pmatrix}$$

Gauge couplings:

$$\gamma H^+H^-$$
, ZH^+H^- , $W^-H^+A^0$, $W^-H^+(ch^0-sH^0)$

Two automatic features of the Standard Model:

2) No flavor-changing neutral Higgs couplings.

Generic multi-Higgs-doublet model:

$$\mathcal{L}_{\mathsf{Yuk}} \supset -y_{ij}^d \bar{d}_{Ri} \Phi_1 Q_{Lj} - \tilde{y}_{ij}^d \bar{d}_{Ri} \Phi_2 Q_{Lj} + h.c.$$

Mass matrix for down-type quarks: $m_{ij}^d = (y_{ij}^d v_1 + \tilde{y}_{ij}^d v_2)/\sqrt{2}$. Diagonalizing m_{ij}^d does *not* in general diagonalize y_{ij}^d and \tilde{y}_{ij}^d separately; leads to flavor-changing neutral Higgs couplings.

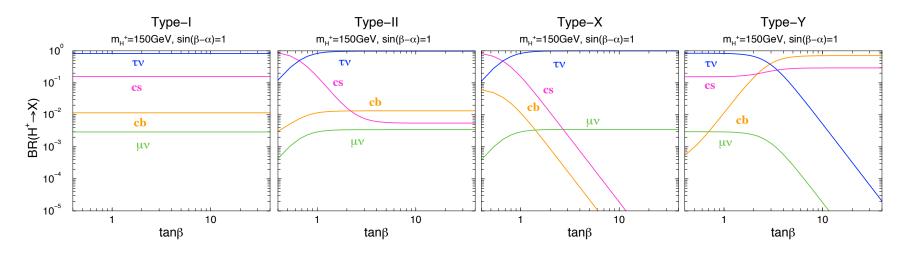
Flavor-changing neutral Higgs couplings are forbidden if each type of fermion (u, d, ℓ) gets its mass from exactly one Higgs doublet: called "natural flavor conservation." [Glashow & Weinberg;

Paschos; 1977]

One doublet:
$$\mathcal{L} = -y_{ij}^d \bar{d}_{Ri} \Phi Q_{Lj} - y_{ij}^u \bar{u}_{Ri} \tilde{\Phi} Q_{Lj} - y_{ij}^\ell \bar{e}_{Ri} \Phi L_{Lj} + h.c.$$

Two doublets: four ways to assign fermion couplings (u, d, ℓ) :

	Type I	Type II	Leptonic	Flipped
$\overline{\Phi_1}$	_	d,ℓ	ℓ	\overline{d}
Φ2	u,d,ℓ	u	u,d	u,ℓ

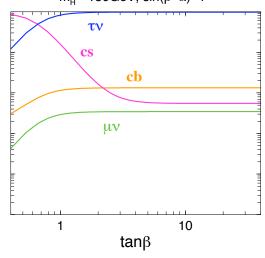

Charged Higgs couplings to fermions (all $\times \frac{ig}{\sqrt{2}M_W}$):

Model	$H^+ \bar{u}_i d_j$	$H^+ar{ u}_i\ell_i$
Type I	$V_{ij}(\cotetam_{ui}P_L-\cotetam_{dj}P_R)$	$\cot eta m_{\ell i} P_R$
Type II	$V_{ij}(\cotetam_{ui}P_L+ anetam_{dj}P_R)$	$tanoldsymbol{eta}m_{\ell i}P_{R}$
Leptonic	$V_{ij}(\cotetam_{ui}P_L-\cotetam_{dj}P_R)$	$tanoldsymbol{eta}m_{\ell i}P_{R}$
Flipped	$V_{ij}(\cotetam_{ui}P_L+ anetam_{dj}P_R)$	$\cot eta m_{\ell i} P_R$

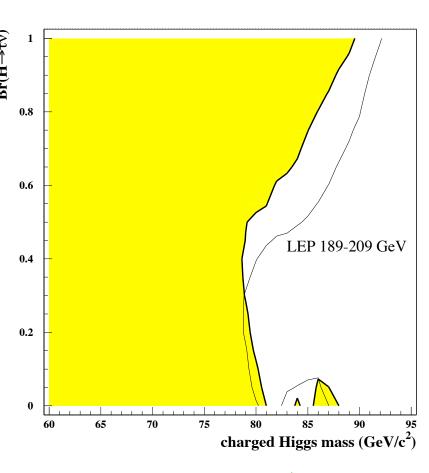
Physics controlled by $\tan \beta$ and M_{H^+} .

Most experimental studies: Type II model (same as in MSSM).

Model	$H^+ \bar{u}_i d_j$	$H^+ar{ u}_i\ell_i$
Type I	$V_{ij}(\cotetam_{ui}P_L-\cotetam_{dj}P_R)$	$\cotetam_{\ell i}P_R$
Type II	$V_{ij}(\cot \beta m_{ui} P_L + \tan \beta m_{dj} P_R)$	$tanetam_{\ell i}P_R$
Leptonic	$V_{ij}(\cotetam_{ui}P_L-\cotetam_{dj}P_R)$	$tanetam_{\ell i}P_R$
Flipped	$V_{ij}(\cotetam_{ui}P_L+ anetam_{dj}P_R)$	$\cot eta m_{\ell i} P_R$


Aoki et al, Phys. Rev. D80, 015017(2009)

LEP, Tevatron, and LHC


LEP combined limit, assuming

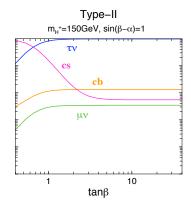
BR(
$$H^{+} \to \tau \nu$$
) + BR($H^{+} \to c\bar{s}$) = 1: $M_{H^{+}} > 78.6 \text{ GeV}$ (89.6 GeV for BR($H^{+} \to \tau \nu$) = 1)

Type-II $m_{\mu}^{+}=150 \text{GeV}, \sin(\beta-\alpha)=1$

Aoki et al, Phys. Rev. D80, 015017(2009)

ADLO, hep-ex/0107031

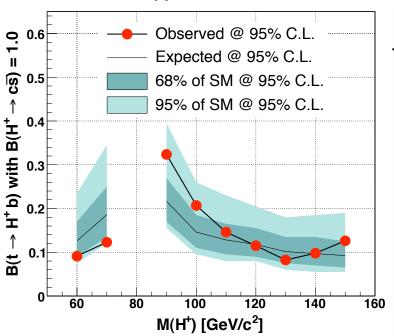
Separate OPAL analysis for BR $(H^+ \to \tau \nu) = 1$: $M_{H^+} \geq 92.0$ GeV Abbiendi et al [OPAL], Eur. Phys. J. C32, 453 (2004)

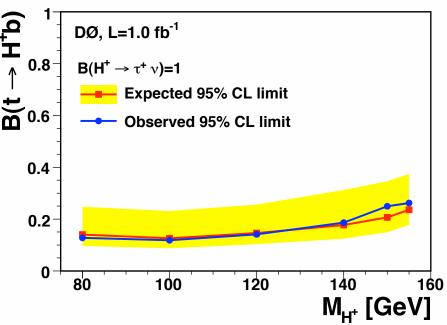

Heather Logan (Carleton U.)

Charged Higgs pheno

LEP, Tevatron, and LHC

Tevatron search for charged Higgs in top decay


Type-II model: coupling for $t \to bH^+$ is $\frac{ig}{\sqrt{2}M_W}V_{tb}(\cot\beta m_t P_L + \tan\beta m_b P_R)$


Aoki et al (2009)

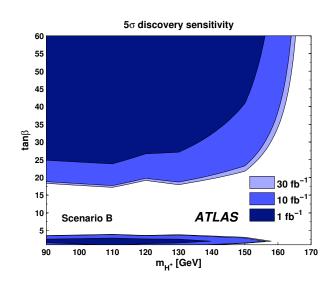
$$\mathsf{BR}(H^+ \to c\overline{s}) = 1$$

Look for $M_{jj} \neq M_W$

 $\mathsf{BR}(H^+ \to \tau \nu) = 1$

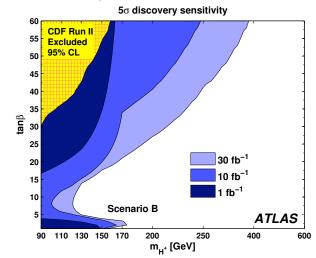
CDF, PRL103, 101803 (2009)

Heather Logan (Carleton U.)


Charged Higgs pheno

DZero, arXiv:0908.1811

LEP, Tevatron, and LHC


LHC search prospects: Type II 2HDM

Light charged Higgs: top decay $t \to H^+ b$ with $H^+ \to \tau \nu$

ATLAS CSC book, arXiv:0901.0512

Heavy charged Higgs: associated production tH^+ with $H^+ \rightarrow tb$

Charged Higgs pheno

Lepton-specific two Higgs doublet model

Model	$H^+ \bar{u}_i d_j$	$\overline{H^+ar{ u}_i\ell_i}$
Type II	$V_{ij}(\cotetam_{ui}P_L+ anetam_{dj}P_R)$	$\overline{tanetam_{\ell i}P_R}$
Leptonic	$V_{ij}(\cotetam_{ui}P_L-\cotetam_{dj}P_R)$	$ aneta m_{\ell i} P_R$

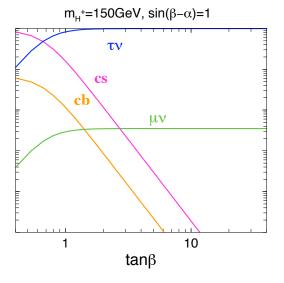
Couplings to quarks: $\propto \cot \beta$, same pattern as Type I 2HDM.

- Constraint from $b\to s\gamma$ same as in Type-I model: $\tan\beta\gtrsim 4(2)$ for $M_{H^+}=100(500)$ GeV. [Su & Thomas, PRD79, 095014 (2009)]
- Production rates in $t \to H^+b$, tH^+ associated production suppressed by $\cot^2 \beta$.

Couplings to leptons: $\propto \tan \beta$

- Decays to taus usually dominate
- Model used as "messenger" of dark matter for PAMELA/ATIC positron excess [Goh, Hall & Kumar, JHEP 05 (2009) 097]

Lepton-specific two Higgs doublet model: constraints

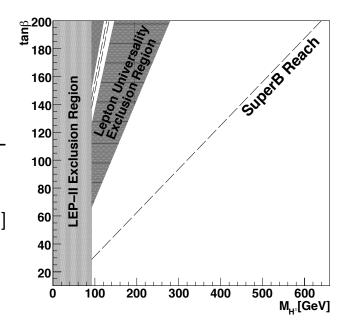

Below the tb threshold: decays almost entirely to $\tau\nu$.

[Plot: Aoki et al, PRD80, 015017(2009)]

Use LEP limit from OPAL:

$$M_{H^+} \geq$$
 92.0 GeV

Abbiendi et al [OPAL], EPJC32, 453 (2004)

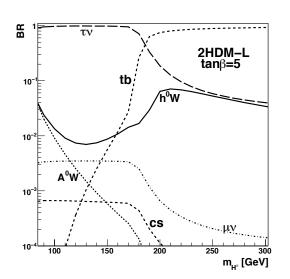

$\tau \to e \nu \bar{\nu} \mbox{ VS } \tau \to \mu \nu \bar{\nu}$:

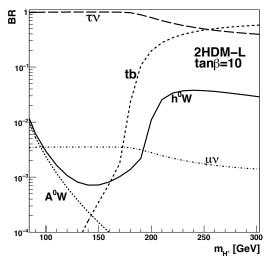
Tree-level charged Higgs exchange affects lepton universality.

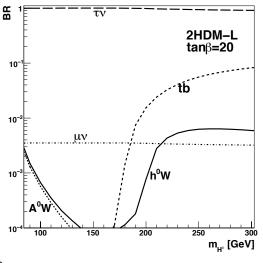
[Plot: HEL & D. MacLennan, PRD79, 115022 (2009)]

$$M_{H^+} \geq 1.4 \tan \beta \text{ GeV}$$

(plus allowed sliver: $0.61-0.73 \tan \beta \text{ GeV}$)

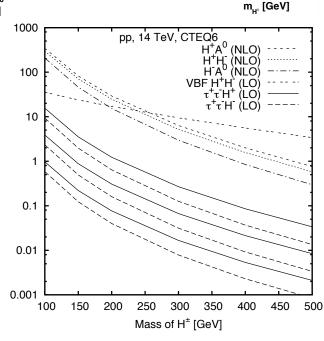



Heather Logan (Carleton U.)


Charged Higgs pheno

Lepton-specific two Higgs doublet model: LHC prospects

Decays are to $\tau\nu$; also the above threshold for tan β not too large.



[Plots: HEL & D. MacLennan, PRD79, 115022 (2009)]

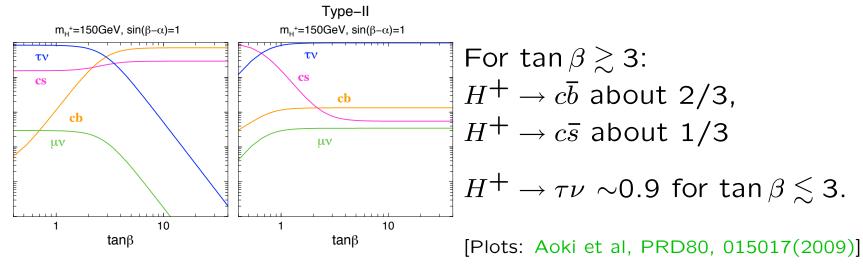
Production rates in $t \to H^+b$, tH^+ associated production suppressed by \mathbb{S} cot² β .

Have to rely instead on electroweak production: $H^+H^- \to \tau^+\tau^-p_T^{\rm miss}$, $H^\pm A^0/H^0 \to \tau^\pm p_T^{\rm miss} \tau \tau \; (\mu \mu)$

Heather Logan (Carleton U.)

Charged Higgs pheno

TRIUMF Jan 20, 2010


Flipped two Higgs doublet model

Model	$H^+ \bar{u}_i d_j$	$\overline{H^+ar{ u}_i\ell_i}$
Type II	$V_{ij}(\cotetam_{ui}P_L+ anetam_{dj}P_R)$	$\overline{tanetam_{\ell i}P_R}$
Flipped	$V_{ij}(\cotetam_{ui}P_L+ anetam_{dj}P_R)$	$\cot eta m_{\ell i} P_R$

Couplings to quarks: same pattern as Type II 2HDM.

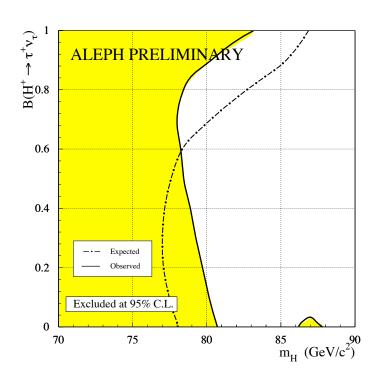
- Constraint from $b\to s\gamma$ same as in Type-II model, $M_{H^+}\gtrsim 200-300$ GeV [modulo cancellations with other flavor-violating contributions]
- Production rates in $t \to H^+b$, tH^+ associated production same as in Type-II.

Couplings to leptons: proportional to $\cot \beta$ instead of $\tan \beta$.

Heather Logan (Carleton U.)

Charged Higgs pheno

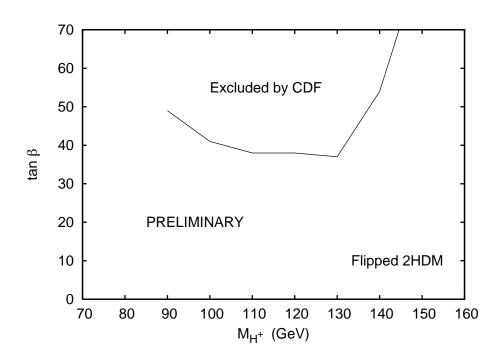
Flipped two Higgs doublet model: constraints

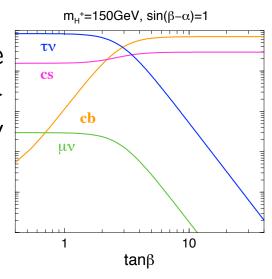

Limits from LEP: Can't use LEP combined: DELPHI and L3 actively rejected bs: no good for $H^+ \to c\bar{b}$.

OPAL and ALEPH just selected jets:

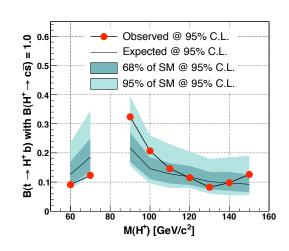
assumption is
$$BR(H^+ \to \tau \nu) + BR(H^+ \to q\bar{q}') = 1$$
.

 $M_{H^+} > 78.0$ GeV overall 83.4 GeV for BR $(H^+ \to \tau \nu) = 1$, 80.7 GeV for BR $(H^+ \to \tau \nu) = 0$


P. Colas [ALEPH], CERN-ALEPH-2001-016


Flipped two Higgs doublet model: constraints

Top quark decay at the Tevatron:


For $\tan \beta \gtrsim 3$, $H^+ \to c\bar{b} + c\bar{s} \simeq 1$. Translate CDF limits on BR $(t \to H^+ b)$ with BR $(H^+ \to c\bar{s}) = 1$. $H^+ \to c\bar{b}$ should have only slightly worse M_{jj} resolution.

PRELIMINARY HEL & D. MacLennan, in preparation

Aoki et al (2009)

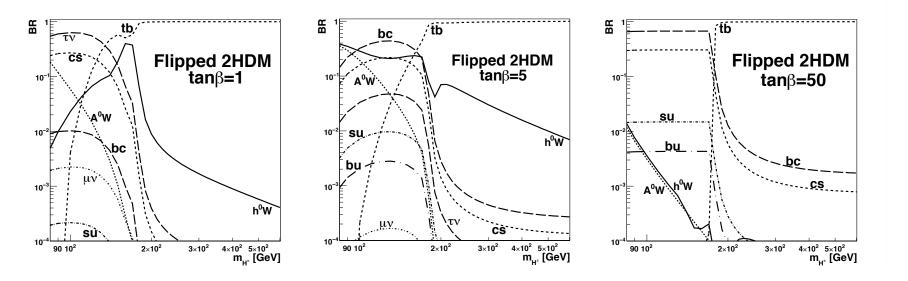
CDF (2009)

Flipped two Higgs doublet model: constraints

Top quark decay at the Tevatron:

For $\tan \beta \sim 1$, H^+ branching ratios about the same as in Type II model. Use Tevatron limits from DØ directly. (improved extraction in progress)

$\overline{M_{H^+} ({\sf GeV})}$	aneta lower bound
100	1.4
120	1.1
150	0.5


PRELIMINARY HEL & D. MacLennan, in preparation

Flipped two Higgs doublet model: LHC prospects

Production couplings to quarks are identical to Type II 2HDM.

Below tb threshold, decays are to $\tau\nu$ for $\tan\beta < 3$, cb + cs for $\tan \beta > 3$.

Above tb threshold, decays to tb always dominate.

HEL & D. MacLennan, in preparation

Flipped two Higgs doublet model: LHC prospects

Light charged Higgs: BR $(t \to H^+ b)$ same as Type II model, but $H^+ \to cb$, cs at large $\tan \beta$! LHC studies with $H^+ \to \tau \nu$ not applicable.

Heavy charged Higgs: $H^+ \to tb$ decay dominates; tH^+ associated production cross section same as Type II model. Studies carry over verbatim.

 5σ discovery prospects (30 fb⁻¹): [based on ATLAS]

$\overline{\tan \beta}$	M_{H^+} range accessible (GeV)
30	180-200
45	180-250
60	180-300

Two-doublet model for neutrino masses

S.M. Davidson and H.E.L., arXiv:0906.3335

New field content:

3 right-handed two-component neutrinos ν_{R_i} (EW singlets) Second scalar doublet Φ_2 , same EW charges as SM Higgs New symmetry: global U(1)

 ν_{R_i} and Φ_2 have charge +1; all SM fields uncharged $M\nu_R\nu_R$ Majorana mass term forbidden by global U(1).

Lepton Yukawa couplings: structure fixed by U(1)

$$\mathcal{L}_{Yuk} = -y_{ij}^{\ell} \bar{e}_{R_i} \Phi_1^{\dagger} L_{L_j} - y_{ij}^{\nu} \bar{\nu}_{R_i} \tilde{\Phi}_2^{\dagger} L_{L_j} + \text{h.c.}$$

To generate neutrino masses, break U(1) explicitly:

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1})$$

 Φ_2 gets a tiny vev $v_2 \sim \text{eV}$.

Particles and couplings

3 SM neutrinos are Dirac particles; no additional fermionic d.o.f.

4 new scalar degrees of freedom: H^{\pm} , H^{0} , A^{0}

Mixing effects: new scalars $\sim \Phi_2 + \mathcal{O}(v_2/v_1)\Phi_1$: completely negligible

Yukawa couplings of physical scalars:

$$\mathcal{L}_{Yuk} = \frac{m_{\nu_i}}{v_2} H^0 \bar{\nu}_i \nu_i - \frac{i m_{\nu_i}}{v_2} A^0 \bar{\nu}_i \gamma_5 \nu_i - \sqrt{2} \frac{m_{\nu_i}}{v_2} [U_{\ell i}^* H^+ \bar{\nu}_i P_L e_\ell + \text{h.c.}]$$

 $U_{\ell i}$ is the Maki-Nakagawa-Sakata-Pontecorvo matrix

Constraint from big bang nucleosynthesis:

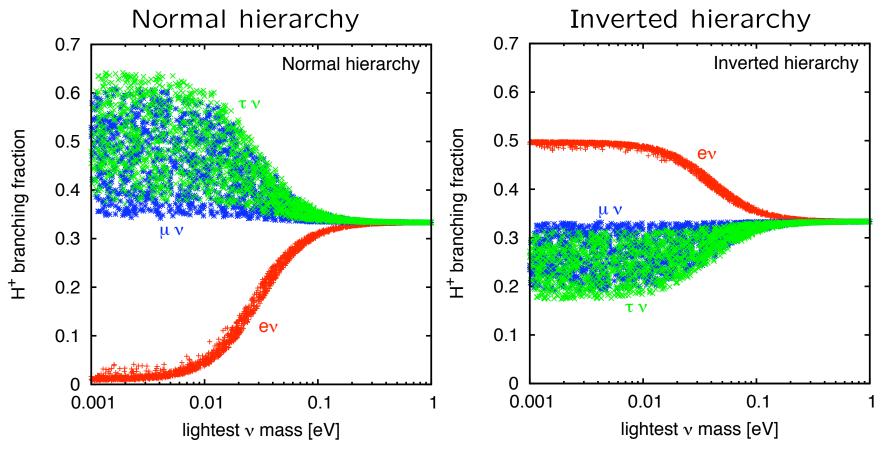
$$y_i^
u \equiv \sqrt{2} rac{m_{
u_i}}{v_2} \lesssim rac{1}{30} \left[rac{M_{H^+}}{100 \; {
m GeV}}
ight] \left[rac{1/\sqrt{2}}{|U_{\ell i}|}
ight]$$

a little bigger than SM bottom quark Yukawa coupling or $v_2 \gtrsim$ 2 eV (scales with heaviest neutrino mass).

Phenomenology: decays of new scalars

Fermionic modes: $H^+ \to \ell^+ \nu$, $A^0/H^0 \to \nu \bar{\nu}$ (via y_i^{ν}) Bosonic modes: $A^0/H^0 \to W^+H^-$ or $H^+ \to W^+A^0/H^0$ (gauge int) depends on masses: $M_A^2 = M_H^2 = M_{H^+}^2 + \lambda_4 v_1^2/2$

Most interesting decays: $H^+ \rightarrow \ell^+ \nu$.


Assume $M_{A,H} > M_{H^+}$: no $H^+ \to W^+ H^0 / A^0$.

$$\Gamma(H^+ \to \ell^+ \nu) = \frac{M_{H^+}}{8\pi v_2^2} \sum_i m_{\nu_i}^2 |U_{\ell i}|^2$$

Depends on expectation value of m_{ν}^2 in *flavor* eigenstate ν_{ℓ} .

$$BR(H^{+} \to \ell^{+} \nu) = \frac{\sum_{i} m_{\nu_{i}}^{2} |U_{\ell i}|^{2}}{\sum_{\ell} \left[\sum_{i} m_{\nu_{i}}^{2} |U_{\ell i}|^{2} \right]}$$

Identical to Φ^+ decay BRs in Type-2 seesaw model.

Behavior controlled by $\theta_{23} \sim 45^{\circ}$, U_{e3} small.

Normal hierarchy: eigenstate 3 contains half of u_{μ} , half of $u_{ au}$, very little u_{e}

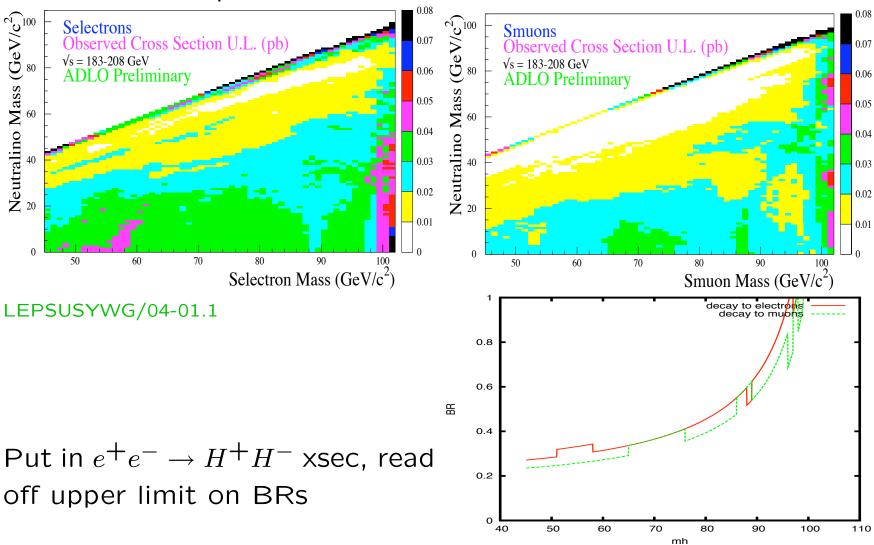
$$ightarrow$$
 BR $(\mu
u)\simeq$ BR $(au
u)\simeq 1/2$, BR $(e
u)\ll 1$

Inverted hierarchy: eigenstates 1 & 2 contain all of ν_e , half of ν_μ , half of $\nu_ au$

$$ightarrow$$
 BR $(e
u) \simeq 1/2$, BR $(\mu
u) \simeq$ BR $(au
u) \simeq 1/4$

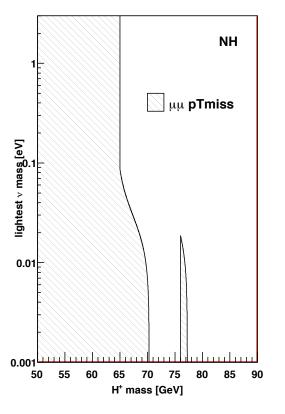
Degenerate spectrum

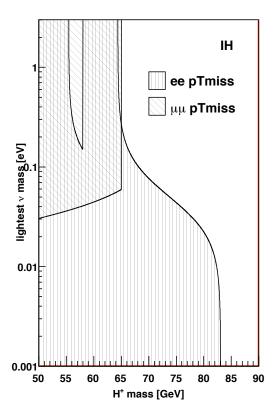
 \rightarrow all three BRs = 1/3.

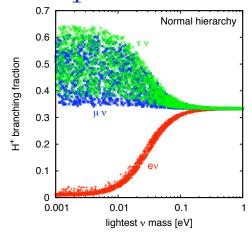

Heather Logan (Carleton U.)

Charged Higgs pheno

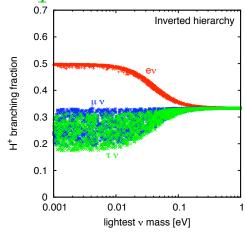
Constraints: LEP limit on H^+H^-


 $\mathsf{BR}(H^+ \to \tau \nu)$ too small for usual LEP charged Higgs search.


Look at LEP slepton searches instead with massless "neutralino".


Heather Logan (Carleton U.)

Charged Higgs pheno



NH: $\mu\mu p_T^{miss}$ channel strongest

IH: eep_T^{miss} channel strongest

Heather Logan (Carleton U.)

Charged Higgs pheno

TRIUMF Jan 20, 2010

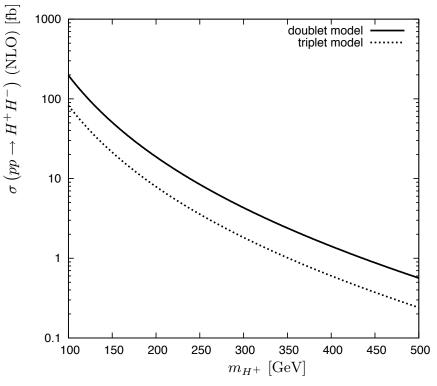
Phenomenology: LHC prospects

Rely on pair production: $pp \to H^+H^-$, $H^{\pm}A^0/H^0$, A^0H^0

- No coups to quarks; $H^+\ell_L^u_R$ coupling $\lesssim 1/30$ (BBN constraint)
- Single production $\sim g^2 v_2$: super tiny

 H^+ BR to $\mu\nu$ or $e\nu$ always $\geq 1/3$: $\ell^+\ell^-p_T^{miss}$ signature

Nice feature: H^+H^-Z coupling.


This model: SU(2) doublet:

$$g_{H^+H^-Z} = \frac{e}{s_W c_W} (\frac{1}{2} - s_W^2)$$

Type-2 seesaw: SU(2) triplet:

$$g_{\Phi^+\Phi^-Z} = \frac{e}{s_W c_W} (0 - s_W^2)$$

Doublet cross section \sim 2.5x larger than triplet.

Phenomenology: LHC prospects

S.M. Davidson and H.E.L., work in progress

Signal:
$$pp \to H^+H^- \to \mu^+\mu^-p_T^{\text{miss}}$$
, $e^+e^-p_T^{\text{miss}}$, $e^\pm\mu^\mp p_T^{\text{miss}}$

Major backgrounds: W^+W^- , $t\bar{t}$, zz, $z\gamma$

Selection cuts:

Both leptons $p_T>20$ GeV; $p_T^{\rm miss}>30$ GeV Veto jets with $p_T>30$ GeV (kills most of $t\bar{t}$ background) Veto Z pole, 80 GeV $< M_{\ell^+\ell^-} < 100$ GeV $H_T' \equiv p_T^{\ell^+} + p_T^{\ell^-} + p_T^{\rm miss}>200$ (600) GeV [for $M_{H^+}=100$ (300) GeV]

Looks promising for discovery of $M_{H^+}=100~{\rm GeV}$ with 30 ${\rm fb}^{-1}$ $(M_{H^+}=300~{\rm GeV}$ with 300 ${\rm fb}^{-1})$ [preliminary]

Conclusions

LHC studies for charged Higgs are well-developed... for the Type II model (and to some extent for Type I).

Other charged Higgs coupling patterns lead to different signal processes – both production and decay.

For some channels, LHC studies can be reinterpreted directly.

- Flipped 2HDM: $H^+ \rightarrow t\bar{b}$

For others, new phenomenological & experimental studies needed.

- Neutrino mass model: $H^+H^- \to \ell^+\ell^{(\prime)}-p_T^{\rm miss}$ promising
- Lepton-specific 2HDM: can we do anything with $H^+H^- \rightarrow \tau\tau$?