
Theory uncertainties in ILC Higgs measurements

Heather Logan (Carleton University)

Based on A. Droll & HEL, hep-ph/0612317

Higgs coupling measurements are a big selling point for the ILC.

How do theory uncertainties affect this picture?

Heather Logan

Thy uncert in ILC Higgs meas

Brookhaven Forum 2007-05-30

Conclusions

Theory uncertainties in Higgs couplings are around the percentish level.

Start to have a significant impact when experimental uncertainties get below the percent level.

This happens at high-energy / high-luminosity running (e.g., 1000 fb⁻¹ at 1000 GeV).

Most important theory/parametric uncertainties are:

- m_b (current uncertainty 0.95%) feeds into Γ_b calculation
- α_s (current uncertainty 1.7%) feeds into Γ_b , Γ_c , Γ_g calculation

Expected experimental uncertainties

" Phase 1": 500 fb ^{-1} at 350 GeV, no beam polarization						
SM Higgs	branching ratio u	ncertainties				
$m_H = 120 \text{ GeV}$ 140 GeV						
$BR(b\overline{b})$	2.4%	2.6%				
$BR(c\overline{c})$	8.3%	19.0%				
BR(au au)	5.0%	8.0%				
BR(WW)	5.1%	2.5%				
BR(gg)	5.5%	14.0%				

from K. Desch, hep-ph/0311092

"Phase 2": 100)0 fb $^{-1}$ at 1000 G	GeV, −80%	<u>e- / +60% e+ p</u>	ol'n	
SM Higgs cross section times BR statistical uncertainties					
	$m_H = 115 \text{ GeV}$	120 GeV	140 GeV		
$\sigma imes BR(b\overline{b})$	0.3%	0.4%	0.5%		
$\sigma imes BR(WW)$	2.1%	1.3%	0.5%		
$\sigma imes BR(gg)$	1.4%	1.5%	2.5%		
$\sigma imes BR(\gamma\gamma)$	5.3%	5.1%	5.9%		

from T. Barklow, hep-ph/0312268

Heather Logan

Theoretical & parametric uncertainties

Higgs observable	Theory uncertainty
$\Box_{b\overline{b}}$, $\Gamma_{c\overline{c}}$	1%
$\Gamma_{ au au}^{\circ\circ}$, $\Gamma_{\mu\mu}$	0.01%
Γ_{WW} , Γ_{ZZ}	0.5%
Γ_{gg}	3%
${\sf F}_{\gamma\gamma}^{ss}$	0.1%
$\sigma_{e^+e^- \to \nu \bar{\nu} H}$	0.5%

Parameter	Value	Percent uncertainty
$\alpha_s(m_Z)$	0.1185 ± 0.0020	1.7%
$\overline{m_b}(M_b)$	$4.20\pm0.04~\text{GeV}$	0.95%
$\overline{m_c}(M_c)$	$1.224\pm0.057~\text{GeV}$	4.7%

 α_s : world average from PDG

 m_b and m_c : from fits to kinematic moments in inclusive semileptonic B meson decays. Uncertainties dominated by theory uncertainty in QCD corrections to HQET expansions.

Quantifying the impact of theory/param uncerts:

- "How well can you distinguish SM from BSM?"

- Construct a $\Delta \chi^2$ between the observables in the SM and the MSSM $m_h^{\rm max}$ scenario.

- Look at ""reach" in M_A for a 5 σ ($\Delta \chi^2 = 25$) discrepancy.

 χ^2 observable

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^n (Q_i^{M_1} - Q_i^{M_2}) [\sigma^2]_{ij}^{-1} (Q_j^{M_1} - Q_j^{M_2})$$

 Q_i : the observables. $[\sigma^2]_{ij}^{-1}$: inverse of the covariance matrix,

$$\sigma_{ij}^2 = \delta_{ij}u_iu_j + \sum_{k=1}^m c_i^k c_j^k$$

Straightforward to take into account both uncorrelated uncerts u_i and correlated uncerts c_i^k .

Have to propagate the theoretical and parametric uncertainties to the observables Q_i .

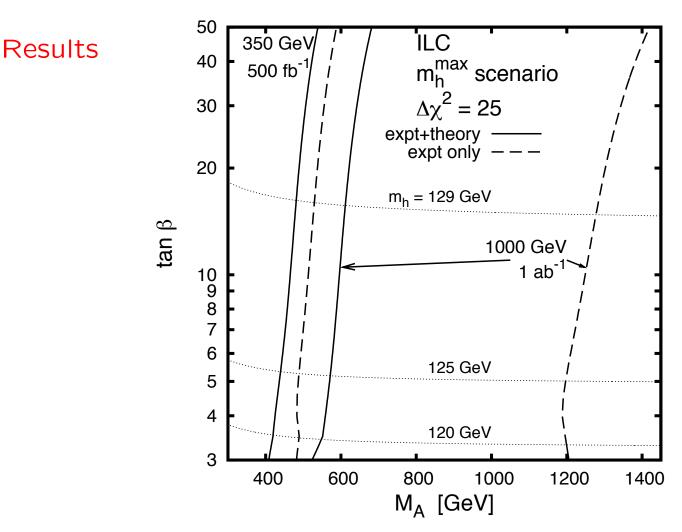
Heather Logan Thy uncert in ILC Higgs meas Brookhaven Forum 2007-05-30

Propagation of theory/param uncertainties

Convenient to work entirely with fractional uncertainties.

Uncertainty in BR_i due to theoretical uncertainty in Γ_k :

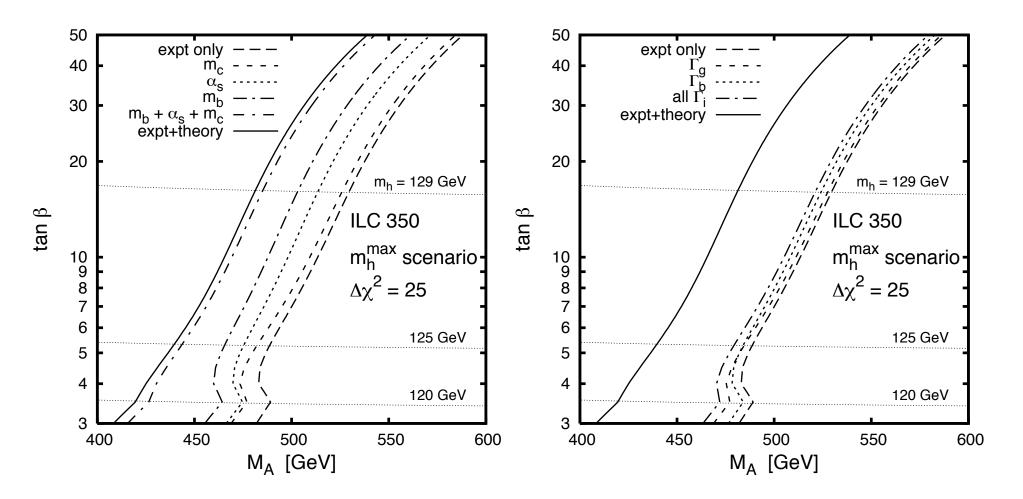
$$c_i^k = \frac{\Gamma_k}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial \Gamma_k} \sigma_{\Gamma_k} \quad \text{where} \quad \frac{\Gamma_k}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial \Gamma_k} = \begin{cases} -\mathsf{BR}_k & \text{for } i \neq k \\ (1 - \mathsf{BR}_k) & \text{for } i = k. \end{cases}$$


Uncertainty in BR_i due to parametric uncertainty in input x_j :

$$c_i^{x_j} = \frac{x_j}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial x_j} \sigma_{x_j} = \sum_{k=1}^n \left[\frac{\mathsf{\Gamma}_k}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial \mathsf{\Gamma}_k} \right] \left[\frac{x_j}{\mathsf{\Gamma}_k} \frac{\partial \mathsf{\Gamma}_k}{\partial x_j} \right] \sigma_{x_j}$$

Normalized derivatives $(x/\Gamma)(\partial\Gamma/\partial x)$:

Normalized derivatives of Higgs partial widths


	$\alpha_s(m_Z)$		$\overline{m_b}(M_b)$		$\overline{m_c}(M_c)$	
$\overline{m_H}$	120 GeV	140 GeV	120 GeV	140 GeV	120 GeV	140 GeV
$\Gamma_{b\overline{b}}$	-1.177	-1.217	2.565	2.567	0.000	0.000
$\Gamma_{c\overline{c}}$	-4.361	-4.400	-0.083	-0.084	3.191	3.192
Γ_{gg}	2.277	2.221	-0.114	-0.112	-0.039	-0.032

Phase 1: Reach \sim 500 GeV without thy/param uncerts. Reduced by about 10% by including thy/param uncerts.

Heather Logan Thy uncert in ILC Higgs meas Brookhaven Forum 2007-05-30

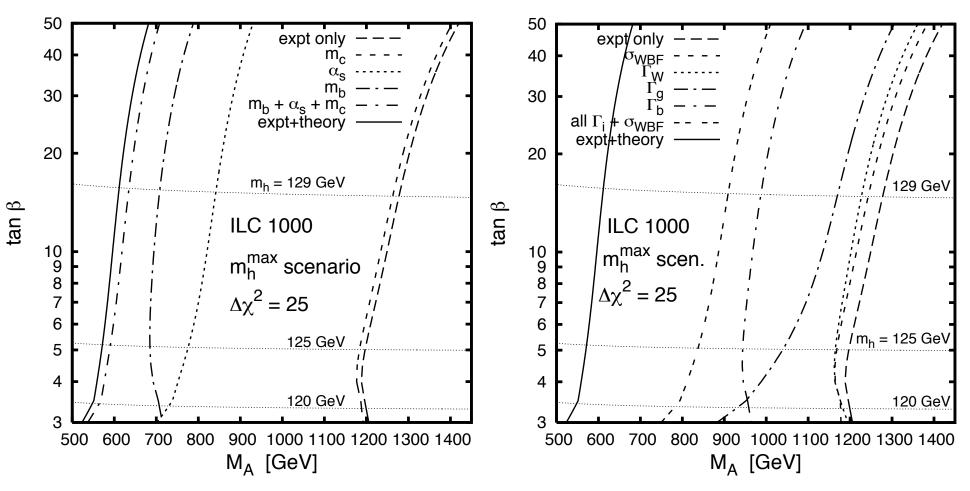
Phase 1:

Effect is mostly due to m_b and α_s input uncertainties.

Parametric and theoretical uncertainties make all the measurements a little worse.

Sample point on experimental uncert only $\Delta \chi^2 = 25$ contour:

	Phase 1 sample point: $M_A = 537.6$ GeV, $\tan \beta = 20$					
Observable	Shift	Expt uncert	Pull	Thy+par uncert	Total uncert	Pull
$BR(b\overline{b})$	8.1%	2.5%	3.25	1.6%	3.0%	2.71
$BR(c\overline{c})$	-12.0%	13.2%	-0.90	16.1%	20.8%	-0.57
BR(au au)	10.0%	6.4%	1.56	1.8%	6.6%	1.51
BR(WW)	-11.6%	3.9%	-2.96	1.8%	4.3%	-2.68
BR(gg)	-14.7%	9.4%	-1.56	5.8%	11.1%	-1.33


 $\Sigma(\text{Pull})^2$:

25 with experimental uncertainties only

18.9 summing "Total uncert" pulls above

17.4 including correlations

Phase 2:

Effect is again mostly due to m_b and α_s uncertainties.

Theory uncertainties in Γ_b (and Γ_g at low tan β) also moderately important.

Heather Logan

Parametric and theoretical uncertainties have a huge impact on the measurements, especially the most precise Phase 2 rates.

Sample point on experimental uncert only $\Delta \chi^2 = 25$ contour:

Phase 2 sample point: $M_A = 1302.4$ GeV, $\tan \beta = 20$						
Observable	Shift	Expt uncert	Pull	Thy+par uncert	Total uncert	Pull
$BR(b\overline{b})$	1.7%	2.5%	0.67	1.7%	3.0%	0.55
$BR(c\bar{c})$	-2.5%	13.3%	-0.19	16.1%	20.8%	-0.12
BR(au au)	2.1%	6.4%	0.34	1.8%	6.6%	0.32
BR(WW)	-2.1%	3.9%	-0.53	1.8%	4.3%	-0.48
BR(gg)	-4.6%	9.4%	-0.48	5.8%	11.1%	-0.41
$\sigma imes BR(b\overline{b})$	1.7%	0.45%	3.72	1.7%	1.8%	0.93
$\sigma imes BR(WW)$	-2.1%	0.93%	-2.22	1.9%	2.1%	-0.98
$\sigma imes BR(gg)$	-4.6%	2.0%	-2.32	5.8%	6.2%	-0.74
$\sigma imes BR(\gamma\gamma)$	0.27%	5.5%	0.05	1.9%	5.8%	0.05

 $\sum (Pull)^2$:

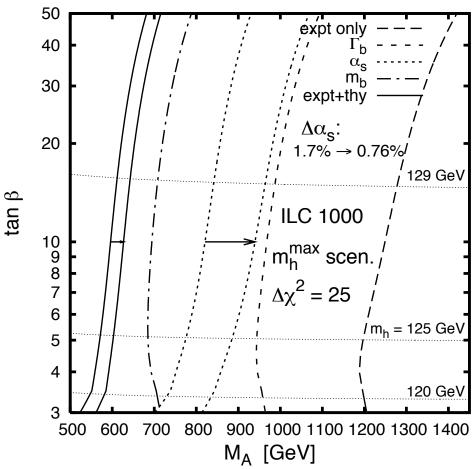
25 with experimental uncertainties only

- 3.2 summing "Total uncert" pulls above
- 1.7 including correlations

Heather Logan

Outlook: α_s

ILC measurements will improve the precision on $\alpha_s(m_Z)$ by $\gtrsim 2 \times$:


- Event shape observables

-
$$\sigma_{t \overline{t}} / \sigma_{\mu^+ \mu^-}$$
 above 2 m_t

- $\Gamma_Z^{had}/\Gamma_Z^{lept}$ at Z pole (GigaZ option)

Effect of improving $\Delta \alpha_s(m_Z)$ from 0.0020 (1.7%) [current PDG] to 0.0009 (0.76%) [Tesla TDR] (includes GigaZ).

Not much impact unless $\Delta \overline{m_b}(M_b)$ is also improved.

Heather Logan

Outlook: other observables

Phase 2 experimental precision dominated by three channels: $\sigma \times BR(b\overline{b}), \sigma \times BR(gg)$: suffer directly from large par/thy uncerts. $\sigma \times BR(WW)$: affected indirectly through Higgs total width.

A brief foray into the MSSM:

Study characteristic features of MSSM Higgs couplings:

$$\frac{g_{h} o_{\bar{t}t}}{g_{H_{SM}\bar{t}t}} = \frac{g_{h} o_{\bar{c}c}}{g_{H_{SM}\bar{c}c}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$$
$$\frac{g_{h} o_{\bar{b}b}}{g_{H_{SM}\bar{b}b}} = \frac{g_{h} o_{\tau\tau}}{g_{H_{SM}\bar{\tau}\tau}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$$
$$\frac{g_{h} o_{WW}}{g_{H_{SM}WW}} = \frac{g_{h} o_{ZZ}}{g_{H_{SM}ZZ}} = \sin(\beta - \alpha)$$

Interested in the approach to decoupling:

$$\cos(\beta - \alpha) \simeq \frac{1}{2}\sin 4\beta \frac{m_Z^2}{M_A^2} \longrightarrow 0 \text{ for } M_A \gg m_Z$$

Heather Logan

Thy uncert in ILC Higgs meas

Brookhaven Forum 2007-05-30

Plug in and keep leading term in m_Z^2/M_A^2 :

$$\frac{\delta\Gamma_W}{\Gamma_W} = \frac{\delta\Gamma_Z}{\Gamma_Z} \simeq -\frac{1}{4}\sin^2 4\beta \frac{m_Z^4}{M_A^4} \simeq -4\cot^2 \beta \frac{m_Z^4}{M_A^4}$$
$$\frac{\delta\Gamma_b}{\Gamma_b} \simeq \frac{\delta\Gamma_\tau}{\Gamma_\tau} \simeq -\tan\beta\sin 4\beta \frac{m_Z^2}{M_A^2} \simeq +4\frac{m_Z^2}{M_A^2}$$
$$\frac{\delta\Gamma_c}{\Gamma_c} \simeq \cot\beta\sin 4\beta \frac{m_Z^2}{M_A^2} \simeq -4\cot^2 \beta \frac{m_Z^2}{M_A^2}$$

(Last equality: used large $\tan \beta$ approximation $\sin 4\beta \simeq -4 \cot \beta$.)

Biggest deviations from SM are in Γ_b and Γ_{τ} . Picture not dramatically altered by radiative corrections. Phase 2 experimental precision dominated by three channels: $\sigma \times BR(b\overline{b}), \sigma \times BR(gg)$: suffer directly from large par/thy uncerts. $\sigma \times BR(WW)$: affected indirectly through Higgs total width.

Parametric & theoretical uncertainties are washing out sensitivity to shift in Γ_b relative to Γ_W !

Want another non-hadronic final state to restore sensitivity. $\sigma \times BR(\tau \tau)$ would be perfect.

Sensitivity would come from the ratio:

$$\frac{\sigma \times \mathsf{BR}(\tau\tau)}{\sigma \times \mathsf{BR}(WW)} = \frac{\Gamma_{\tau}}{\Gamma_{W}}$$

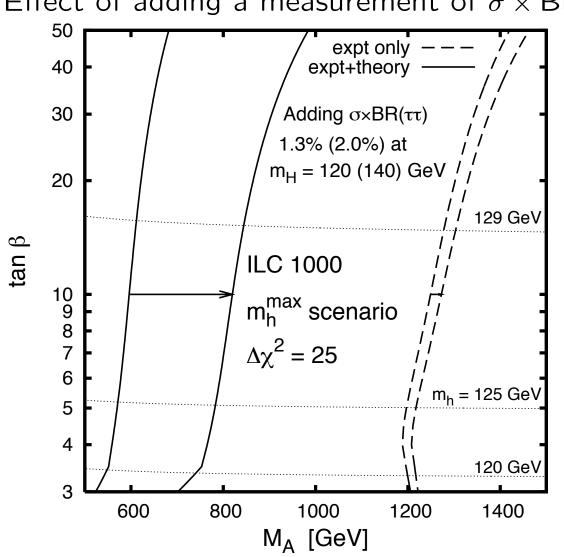
- m_b , α_s , QCD uncertainties in total width cancel

- Ratio Γ_{τ}/Γ_{W} exhibits large deviation from SM

Using correlation matrix in the χ^2 means we don't need to play with ratios: everything is automatic.

Heather Logan Thy uncert in ILC Higgs meas B

Going from Phase 1 to Phase 2, precision on key final states improves:


 $b\overline{b}$: 5-6× WW: 4-5× gg: 3.5-5.5×

"Reasonable" to expect similar improvement in $\tau\tau$: assume $4 \times$ and see what happens.

" Phase 2": 1000 fb ⁻¹ at 1000 GeV, $-80\% e^-$ / $+60\% e^+$ pol'n						
SM Higgs cros	s section times E	BR statistica	al uncertainties			
	$m_H = 115 { m GeV}$	120 GeV	140 GeV			
$\sigma imes BR(b\overline{b})$	0.3%	0.4%	0.5%			
$\sigma imes BR(WW)$	2.1%	1.3%	0.5%			
$\sigma imes BR(gg)$	1.4%	1.5%	2.5%			
$\sigma imes BR(\gamma\gamma)$	5.3%	5.1%	5.9%			
$\sigma imes BR(au au)$	_	1.3%	2.0%			

Original selection required $\sum vis = m_H$; have to change this for $\tau\tau$.

Heather Logan

Effect of adding a measurement of $\sigma \times BR(\tau \tau)$ in Phase 2:

Not a big effect on expt-only reach. Much bigger effect once param/theory uncertainties are included.

Conclusions

Theory uncertainties are at the level of a couple of percent.

Start to have a significant impact when experimental uncertainties get below the percent level - big impact on Phase 2.

Most important theory/parametric uncertainties are:

- m_b (current uncertainty 0.95%) – feeds into Γ_b calculation Improving this is important!

Need more QCD theory work on semileptonic B decay spectra.

- α_s (current uncertainty 1.7%) – feeds into Γ_b , Γ_c , Γ_g calculation Will improve by $\gtrsim 2 \times$ at ILC. GigaZ valuable here.

Understanding the pattern of theory/parametric uncertainties points out the most valuable new experimental channels. Adding $\sigma \times BR(\tau\tau)$: small impact with only expt uncerts; huge impact after thy+param uncerts included.