An Invisible Higgs at Hadron Colliders

Heather Logan UW Madison

Argonne National Lab – February 28, 2005

Why an invisible Higgs?

The SM Higgs is very narrow for $m_h \lesssim 160$ GeV.

If the Higgs couples with electroweak strength to a neutral (quasi)stable particle (e.g., dark matter) with mass $< m_h/2$, then $h \to \text{invisible}$ can be the dominant decay mode.

The Higgs could decay invisibly

- $h \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$ in MSSM, NMSSM
- ullet h o SS in simple models of scalar dark matter
- \bullet $h \rightarrow KK$ neutrinos in extra dimensions
- $h \rightarrow$ Majorons
- . . .

— Cover all our bases!

We shouldn't just assume the Higgs will be SM-like – even small additions (such as scalar singlet dark matter) can make $BR(h \rightarrow invis.)$ large.

"Invisible" Higgs is not that hard to "see": p_T $h \rightarrow jj$ is much harder.

Outline

- Motivation
- An invisible Higgs at the LHC
 - Discovery
 - Mass extraction
- An invisible Higgs at the Tevatron
- Conclusions

An invisible Higgs at the LHC

Search modes:

• WBF $\rightarrow h_{inv}$ Eboli & Zeppenfeld (2000) Signal is jjp_T ; jets are hard and forward

• $Z + h_{inv}$ Frederiksen, Johnson, Kane & Reid (1994); Choudhury & Roy (1994); Godbole, Guchait, Mazumdar, Moretti & Roy (2003); Davoudiasl, Han & H.L. (2004) Signal is $\ell^+\ell^-p_T$, with $m(\ell^+\ell^-) = m_Z$ ($\ell = e, \mu$)

• $W + h_{inv}$ Choudhury & Roy (1994); Godbole, Guchait, Mazumdar, Moretti & Roy (2003) Signal is ℓp_T ; totally swamped by background.

• $t \bar{t} h_{inv}$ Gunion (1994); Kersevan, Malawski & Richter-Was (2002) Signal is $b j j + b \ell + p / T$.

Associated $Z + h_{inv}$ production at LHC

Higgs decays invisibly; consider Z decays to leptons.

 \rightarrow Signal is $\ell^+\ell^-p_T$ ($\ell=e,\mu$)

Major backgrounds:

- $Z(\to \ell^+\ell^-)Z(\to \nu\bar{\nu})$
- $W(\to \ell^+ \nu) W(\to \ell^- \bar{\nu})$
- $W(\to \ell \nu) Z(\to \ell^+ \ell^-)$ with missed lepton
- $Z(\rightarrow \ell^+\ell^-) + j$ with fake p_T

We simulated the $Z + h_{inv}$ signal and the ZZ, WW, and WZ backgrounds using Madgraph.

The Z+j background with fake p_T comes from Z+j events in which the jet(s) are missed: either they are too soft or they go down the beampipe. We took results for this background from Frederiksen, Johnson, Kane & Reid.

Cuts:

We start with some "minimal cuts":

$$p_T(\ell^{\pm}) > 10 \text{ GeV}, \qquad |\eta(\ell^{\pm})| < 2.5, \qquad \Delta R(\ell^+\ell^-) > 0.4$$

The leptons in the signal reconstruct to the Z mass. The WW background can be largely eliminated by a Z mass cut:

$$|m_{\ell^+\ell^-} - m_Z| < 10 \text{ GeV}$$

This also removes Drell-Yan $Z \to \tau \tau$.

The leptons from the WW background also tend to be back-to-back; this background can be further reduced with an angular cut:

$$\Delta \phi_{\ell+\ell-} < 2.5$$

This cut also eliminates Drell-Yan with mismeasured ℓ^{\pm} energy.

To cut down the WZ background, we veto events with a third lepton with

$$p_T > 10$$
 GeV, $|\eta| < 3.0$ (lepton veto)

Final cut is on p_T :

- p_T of WW background tends to be soft, since it comes from the neutrinos in two independent W decays.
- ullet p_T of ZZ background is softer than signal: ZZ is t-channel while $Z+h_{inv}$ is s-channel.
- p_T of Signal increases with m_h .

Z+j background with fake p_T :

Fake p_T due to missed jets — too soft or too large rapidity — escape the jet veto

Proper treatment for modern ATLAS/CMS design requires detector simulation — beyond the scope of our study.

Was studied in Frederiksen, Johnson, Kane & Reid (1994) for various p_T cuts and rapidity coverage of hadronic calorimeter \rightarrow we adapt their results for our study.

- With $\Delta R(\ell^+\ell^-) > 0.4$, we have larger lepton acceptance by a factor of 1.6 than Frederiksen, Johnson, Kane & Reid (who used $\Delta R(\ell^+\ell^-) > 0.7$)
- → better statistics with same luminosity.
- ullet We consider a range of p_T cuts Frederiksen, Johnson, Kane & Reid considered lower p_T , Godbole et al considered higher \to optimize p_T cut to improve signal significance

Comparison to Godbole et al (2003) study of $Z + h_{inv}$

They included hadronization using PYTHIA/HERWIG and detector simulation using CMSJET/GETJET (respectively).

No big surprises — our results are consistent with theirs.

- jet veto on ISR ↔ NLO K-factor
- \bullet $t\bar{t}$
- WZ lepton veto

Results (LHC, $ee + \mu\mu$)

Signal and background cross sections (after cuts):

					S	$\overline{(Z+h_{inv})}$	 -
$p\!\!\!/_T$ cut	B(ZZ)	B(WW)	B(ZW)	$B(Z+j)^*$	$m_h = 120$	140	160 GeV
65 GeV	48.0 fb	10.6 fb	10.2 fb	22 fb	14.8 fb		
75 GeV	38.5 fb	4.3 fb	7.4 fb	9 fb	12.8 fb	9.4 fb	7.0 fb
85 GeV	30.9 fb	1.8 fb	5.5 fb		11.1 fb	8.3 fb	6.3 fb
100 GeV	22.1 fb	0.6 fb	3.6 fb		8.7 fb	6.8 fb	5.3 fb

^{*}B(Z+j) extrapolated from Frederiksen, Johnson, Kane & Reid

Significance: (parentheses: includes Z + j)

		$m_h = 120 { m GeV}$		$m_h = 140 {\rm GeV}$	$m_h = 160 \text{ GeV}$
$p\!\!\!/_T$ cut	S/B	$\mathrm{S}/\sqrt{\mathrm{B}}~(10~\mathrm{fb^{-1}})$	$S/\sqrt{B} \ (30 \ fb^{-1})$	S/\sqrt{B} (30 fb ⁻¹)	S/\sqrt{B} (30 fb ⁻¹)
65 GeV	0.22 (0.16)	5.6 (4.9)	9.8 (8.5)		
75 GeV	0.25 (0.22)	5.7 (5.3)	9.9 (9.1)	7.3 (6.7)	5.4 (5.0)
85 GeV	0.29	5.7	9.8	7.4	5.6
100 GeV	0.33	5.4	9.3	7.3	5.7

 $m_h = 120 \text{ GeV}$: $> 5\sigma \text{ signal with } 10 \text{ fb}^{-1}$.

With 30 fb⁻¹, 5σ discovery extends out to $m_h=160$ GeV.

• $Z + h_{inv}$: $S/\sqrt{B} \gtrsim 5$ for $m_h = 120$ GeV and 10 fb⁻¹.

Comparison to WBF $\rightarrow h_{inv}$ process [Eboli & Zeppenfeld]

- WBF $\rightarrow h_{inv}$ gives much better significance: $S/\sqrt{B} \simeq 24$ for $m_h = 120$ GeV and 10 fb⁻¹.
- $Z + h_{inv}$ provides an independent discovery channel: very different search with different systematics independent handle on h_{inv} production

Comparison to $t\bar{t}h_{inv}$ process [Gunion; Kersevan, Malawski & Richter-Was]

• $t\overline{t}h_{inv}$ is a complicated process – many particles in the final state and many backgrounds.

$$S/\sqrt{B}\sim 4$$
 for $m_h=120$ GeV and 10 fb⁻¹.

Extracting the mass of an invisible Higgs

ullet Mass of h_{inv} accessible only through production process:

- Measure signal rate
- Assume SM production cross section, 100% invisible decay.*
- → Higgs mass.

^{*}Will remove these assumptions later!

Uncertainties:

• Statistical uncertainty:

$$\Delta \sigma_S / \sigma_S = \sqrt{S + B} / S$$

Background normalization:

Backgrounds for $Z+h_{inv}$ and WBF are dominated by $Z\to \nu\nu$. Can measure background rates/shapes in $Z\to\ell\ell$ channel! Less statistics: ${\sf BR}(Z\to\ell\ell)/{\sf BR}(Z\to\nu\nu)\simeq 0.28$.

$$\Delta \sigma_S / \sigma_S = \sqrt{B \times \mathsf{BR}(\ell\ell) / \mathsf{BR}(\nu\nu) / S}$$

- Theory uncertainty: QCD + PDFs 4% for WBF, 7% for $Z + h_{inv}$
- Uncertainty on experimental efficiencies:

5% for WBF forward-jet tag / central-jet veto 4% dilepton tagging (2% per lepton)

• Luminosity normalization: 5%

Higgs mass determination from $Z + h_{inv}$, with 10 (100) fb⁻¹:

m_h (GeV)	120	140	160
$(d\sigma_S/dm_h)/\sigma_S$ (1/GeV)	-0.013	-0.015	-0.017
Statistical uncert.	21% (6.6%)	28% (8.8%)	37% (12%)
Background normalization uncert.	33% (10%)	45% (14%)	60% (19%)
Total uncert.	40% (16%)	53% (19%)	71% (24%)
Δm_h (GeV)	30 (12)	35 (12)	41 (14)

$$Z + h_{inv}$$
: $\Delta m_h = 30-40$ (12-14) GeV with 10 (100) fb⁻¹

Higgs mass determination from WBF $\rightarrow h_{inv}$, with 10 (100) fb⁻¹:

m_h (GeV)	120	130	150	200
$(d\sigma_S/dm_h)/\sigma_S \; (GeV^{-1})$	-0.0026	-0.0026	-0.0028	-0.0029
Statistical uncert.	5.3% (1.7%)	5.4% (1.7%)	5.7% (1.8%)	6.4% (2.0%)
Background norm.	5.2% (2.1%)	5.3% (2.1%)	5.6% (2.2%)	6.5% (2.6%)
Total uncert.	11% (8.6%)	11% (8.6%)	11% (8.6%)	12% (8.8%)
Δm_h (GeV)	42 (32)	42 (33)	41 (31)	42 (30)

WBF: $\Delta m_h \simeq 40$ (30) GeV with 10 (100) fb⁻¹

 $Z+h_{inv}$ cross section falls faster with m_h than WBF – more m_h dependence but less statistics.

Extracting m_h from a single cross section relies on SM assumption for production couplings.

Ratio of $Z + h_{inv}$ and WBF rates \rightarrow more model-independent m_h extraction!

 $Z+h_{inv}\sim hZZ$ coupling; WBF $\sim hWW, hZZ$ couplings – related by SU(2) in models with only Higgs doublets/singlets.

Example: MSSM (or 2HDM)
$$\frac{\{W,Z\}}{\{W,Z\}^{-1}} \quad ZZh \text{ coup} = (gm_Z/\cos\theta_W)\sin(\beta-\alpha)$$

$$WWh \text{ coup} = gm_W\sin(\beta-\alpha)$$

Higgs mass determination from ratio method with 10 (100) fb $^{-1}$:

m_h (GeV)	120	140	160
$r = \sigma_S(Zh)/\sigma_S(WBF)$	0.132	0.102	0.0807
$(dr/dm_h)/r$ (1/GeV)	-0.011	-0.013	-0.013
Total uncert., $\Delta r/r$	41% (16%)	54% (20%)	72% (25%)
Δm_h (GeV)	36 (14)	43 (16)	53 (18)

Can now learn more about the Higgs!

Test 100% invisible decay:

- Look for visible decays in all detectable channels \rightarrow upper bounds on BRs
 - $\sum \mathsf{BR}_i = 1 \longrightarrow \mathsf{BR}_{inv} = 1 \sum \mathsf{BR}_{other}$
- Cannot exclude certain decays, e.g. $h \to \text{light quarks}, \ h \to gg$: background is overwhelming

Assume SU(2) doublets and/or singlets only (same assumption as we made for ratio method m_h extraction): hWW and hZZ couplings \leq SM values.

Z + h and WBF *production* cross sections bounded from above by SM values.

 \longrightarrow Relatively model-independent *lower bound* on BR_{inv} to produce observed rates in $Z+h_{inv}$ and WBF $\rightarrow h_{inv}$.

Test the assumption of SM production cross section:

- Measure m_h using ratio method
- Compute SM prediction for $\sigma_S(Z+h)$ and $\sigma_S(WBF)$
- Compare to measured $\sigma_S(Z + h_{inv})$ and $\sigma_S(WBF)$
- \rightarrow Probe hZZ, hWW couplings! (modulo BR $_{inv}$)

If we assume no significant branching fraction for $h \to gg, jj$ (so that ${\sf BR}_{inv} + {\sf BR}_{SM\ decays} \simeq 1$), then:

- ullet Compute $\Gamma(h o WW)$ from hWW coupling and m_h
- \bullet Add upper bound on ${\sf BR}(h \to WW)$ from non-observation in ${\sf WBF} \!\!\to h \to WW$
- \longrightarrow *lower* bound on total Higgs width Γ_{tot}
- \longrightarrow lower bound on $\Gamma(h \to invis)$.
- → Test models of invisibly-decaying Higgs.

Test the top quark Yukawa coupling:

- Compute SM prediction for $\sigma_S(t\overline{t}h)$
- Compare to measured $\sigma_S(t\bar{t}h_{inv})$
- \rightarrow Probe htt coupling! (again modulo BR_{inv})

An invisible Higgs at the Tevatron

Search modes:

• $Z + h_{inv}$ Martin & Wells (1999) Signal is $\ell^+\ell^- p_T$, similar to LHC search. 120 GeV Higgs, 10 fb⁻¹: $S/\sqrt{B} \simeq 1.9$

• WBF $\rightarrow h_{inv}$ Davoudiasl, Han & H.L. (2004) Signal is jjp_T ; jets are hard and forward. 120 GeV Higgs, 10 fb $^{-1}$: $S/\sqrt{B} \simeq 1.6$

Looks very depressing... but combining both channels and data from both detectors, can get 3σ with "only" 7 fb⁻¹ of delivered luminosity. Tevatron has a shot at this before the LHC!

 3σ requires $\sim 7~{\rm fb^{-1}}$ for $m_h=120~{\rm GeV}.$

Comparable to SM Higgs sensitivity.

Weak boson fusion $\rightarrow h_{inv}$ at the Tevatron

Higgs decays invisibly; signal is jjp_T

Major backgrounds:

- $Z(\rightarrow \nu \bar{\nu}) + 2j$, from QCD
- $Z(\rightarrow \nu \bar{\nu}) + 2j$, from EW (WBF) kinematics similar to signal
- $W(\rightarrow \ell \nu) + 2j$, from QCD with the lepton missed
- jjp_T with fake p_T

We simulated the WBF signal and the Z+2j and W+2j backgrounds using Madgraph.

The $jj\rlap/\!\!p_T$ background with fake $\rlap/\!\!p_T$ comes from dijet events in which the jet(s) are mismeasured and from multijet events in which the extra jets are too soft or they go down the beampipe. We took a conservative upper limit for this background of 5 fb from a CDF study of $jj\rlap/\!p_T$.

Cuts:

We again start with some "minimal cuts":

$$p_T(j) > 10 \; {
m GeV}, \qquad |\eta(j)| < 3.0, \qquad \Delta R(jj) > 0.4, \qquad p_T > 90 \; {
m GeV}$$

The $\sqrt{T} > 90$ GeV requirement serves as a trigger.

The jets in WBF tend to be separated by a large rapidity gap and reconstruct to a large invariant mass. The Z+2j and W+2j backgrounds from QCD can be significantly reduced by "WBF cuts":

$$\Delta \eta_{jj} > 2.8, \qquad m_{jj} > 320, 340, 360, 400 \text{ GeV}$$

The W+2j background can be further reduced by vetoing leptons with

$$p_T(\ell) > 8 \text{ GeV}, \qquad |\eta(\ell)| < 3.0 \qquad \text{(lepton veto)}$$

To reduce the $jj\not p_T$ background with fake $\not p_T$ from jet energy mismeasurements, we require that the $\not p_T$ is not aligned with either of the jets:

$$\Delta \phi(j, p/T) > 30^{\circ}$$

Results (Tevatron Run II, $m_h = 120 \text{ GeV}$)

Signal and background cross sections (after cuts):

$\overline{m_{jj}}$ cut	$S(h_{inv}+2j)$	B(Z+2j,QCD)	B(Z+2j,EW)	B(W+2j,QCD)
320 GeV	4.1 fb	55 fb	1.7 fb	7 fb
340 GeV	3.6 fb	43 fb	1.6 fb	5 fb
360 GeV	3.2 fb	34 fb	1.4 fb	5 fb
400 GeV	2.4 fb	21 fb	1.2 fb	2 fb

Number of signal events, S/B, and significance:

$\overline{m_{jj}}$ cut	$S (10 \text{ fb}^{-1})$	S/B	$S/\sqrt{B} \ (10 \ fb^{-1})$
320 GeV	41 evts	0.060	1.6
340 GeV	36 evts	0.066	1.5
360 GeV	32 evts	0.070	1.5
400 GeV	24 evts	0.082	1.4

 $m_h = 120 \text{ GeV}$: 1.6 σ signal with 10 fb⁻¹.

Background must be understood at < 10% level.

This could be improved...

Central jet veto

The LHC study of WBF $\rightarrow h_{inv}$ uses a central jet veto to reduce the background. Takes advantage of different color structures of signal and background.

WBF: no color flow between forward/backward jets: expect little jet activity in central region.

QCD Z + 2j: final-state jets are color-connected: expect additional jet radiation in central region.

Eboli & Zeppenfeld applied a central jet veto (from Rainwater) – improves S/B by a factor of three without significantly reducing signal rate.

We have not imposed a central jet veto. If similar background reduction could be achieved at Tevatron, WBF $\rightarrow h_{inv}$ channel alone could give a 3σ observation with "only" 6 fb⁻¹ per detector, with S/B $\simeq 1/5$.

Conclusions

• The Higgs could decay invisibly: don't want to miss it!

• LHC:

- WBF well studied, good significance
- $Z + h_{inv}$ is a promising second channel
- $t \overline{t} h_{inv}$ offers access to top Yukawa
- By combining WBF and $Z+h_{inv}$, can get relatively model-independent m_h measurement: 15–20 GeV with 100 fb⁻¹. Compare with measured cross sections to test Higgs couplings.

• Tevatron:

- $Z + h_{inv}$, WBF both depressingly small
- Combining two channels and two detectors gives Tevatron a chance with 7 ${\rm fb}^{-1}$
- Implementing a central jet veto could improve WBF significantly at the Tevatron