

Interpretation of results, outlook and new ideas

Heather Logan Carleton University (Ottawa, Canada)

Higgs, Top and Electroweak plenary session ICHEP 2016 August 3–10, Chicago, USA

Outline

Introduction: problems of the SM

Interpretation of results

Outlook: Higgs properties

A few theory highlights

New ideas and things to watch

Summary

The Standard Model works very very well ...

Heather Logan (Carleton U.) Higgs/Top/EW: interpretation/outlook/ideas ICHEP 2016

The Standard Model works very very well ... too well!

SM fails to explain many problems — and no hints of solutions!

- Hierarchy problem
- Baryogenesis
- Dark matter
- Flavour (Yukawa matrices) & neutrino masses patterns?
- SM gauge & matter content; hypercharge quantization (GUT?)
- Inflation; dark energy
- Quantum mechanics \leftarrow ? \rightarrow general relativity

Many of these problems are connected to electroweak symmetry breaking:

- Hierarchy problem scalar mass^2 radiative corrections $\sim \Lambda^2$
- Baryogenesis electroweak phase transition?
- Dark matter maybe Higgs portal?
- Flavour (Yukawa matrices) & neutrino masses patterns?
- SM gauge & matter content; hypercharge quantization (GUT?)
- Inflation; dark energy maybe connected to hierarchy problem?
- Quantum mechanics \leftarrow ? \rightarrow general relativity ????

To learn about electroweak symmetry breaking, study the things most strongly coupled to the electroweak-breaking vacuum:

Higgs, top, & electroweak gauge bosons

Higgs couplings – search for evidence of Higgs compositeness, mixing with extra scalars (EW phase transition?), flavour-violating decays, exotic/invisible decays

Top quark – search for partial compositeness (anomalous couplings), top-partners, $t\bar{t}$ resonances

Electroweak gauge bosons – EW precision tests for new physics, vector boson scattering (anomalous couplings), additional Higgs bosons (VBF $\rightarrow H' \rightarrow VV$)

Interpretation of results: $\sim 13 \text{ fb}^{-1}$ at 13 TeV

SM cross section measurements:

- new collision energy \rightarrow check for new kinematic thresholds
- new collision energy \rightarrow sensitivity to BSM tails $\sim (Q/\Lambda)^2$
- theory predictions continuously improving \rightarrow more distributions
- higher signal cross sections, e.g. $t\bar{t}h$, $t\bar{t}Z$, VBF $\rightarrow VV$

New limits from searches:

- new collision energy \rightarrow improved reach at high mass
- BSM Higgs bosons
- new resonances
- top partners
- SUSY particles

Themes for the next few years:

- 1) More luminosity!!
- 2) Theory improvements

Higgs properties: outlook

Higgs is now part of the Intensity Frontier. - A. Petrov

Luminosity	300 fb^{-1}	$3000 {\rm ~fb^{-1}}$	
Coupling parameter	7-parameter fit		
κ_γ	5-7%	2-5%	
κ_g	6-8%	3-5%	
κ_W	4-6%	2-5%	
κ_Z	4-6%	2-4%	
κ_u	14 - 15%	7-10%	
κ_d	10-13%	4-7%	
κ_ℓ	6-8%	2-5%	
Γ_H	12 - 15%	5-8%	

Snowmass 2013	projections:
---------------	--------------

	additional para	additional parameters (see text)		
$\kappa_{Z\gamma}$	41 - 41%	10-12%		
κ_{μ}	23-23%	8-8%		
$\mathrm{BR}_{\mathrm{BSM}}$	<14-18%	<7-11%		

Ranges represent assumptions on systematics: low end is theory uncerts $\times 1/2$, expt systematics $\times 1/\sqrt{\mathcal{L}}$. Heather Logan (Carleton U.) Higgs/Top/EW: interpretation/outlook/ideas ICHEP 2016

Expectations in various models:

- All new particles at $M \sim 1 \,\,{
m TeV}$

- Electroweak precision fits satisfied

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Snowmass 2013, 1310.8361

- Decoupling MSSM: κ_{γ} assumes 1 TeV stop

with tan $\beta = 3.2$, $X_t = 0$.

Projections based on scaling 2012–13 expt analyses to higher lumi: probably better already. Thy uncert reductions \approx already achieved! Franz Herzog's talk

A few theory highlights

Top mass measurement from kinematic templates: measures "Pythia's m_t "

 \rightarrow Translate to more physical mass?

 $e^+e^- \rightarrow t\bar{t}$ NNLL+NLO, match "2-jettiness" ¹⁷⁰ templates to Pythia, calibrate to (evolved) ^{0.2} $\overline{\text{MS}}$ mass Moritz Preisser's talk ^{-0.2} -0.4

New approximate N³LO calculation of $t\bar{t}$ production

Needed to match coming experimental precision!

(not yet in expt/thy comparison plots) Nikolaos Kidonakis' talk

A few theory highlights

Offshell $gg \rightarrow H \rightarrow VV$ interference with continuum $gg \rightarrow VV$ First calculation of (partial) NLO QCD corrections to $gg \rightarrow VV$ and interference term

This is not a new idea, but there are some new developments.

Alexandre Mertens' talk

Constrains alignment limit!

2) $H/A \rightarrow t\bar{t}$ at low tan β Important for closing "wedge" (plot: naive scaling of $t\bar{t}$ resonance search) Djouadi et al, 1502.05653

Need to include interference with QCD $gg \rightarrow t\bar{t}$ background: dip strucutre!

Zhen Liu's talk

Peter Galler's talk

2) $H/A \rightarrow t\bar{t}$ at low tan β

First ATLAS analysis (8 TeV, LO signal MC) Trevor Vickey's talk

3) Portion of $M_{W,Z}$ from isospin-triplet (or higher) scalars?

Ζ Generic feature: $H_5^{\pm\pm}, H_5^{\pm}, H_5^{\pm}$ W/7 5-plet under custodial symmetry, fermiophobic, couple to $VV \propto v_{\chi}$. 13 TeV CMS result $(WZ \rightarrow \ell \nu \ell \ell)$ 15.2 fb⁻¹ (13 TeV) CMS Preliminary $2\sqrt{2}v_{\chi}$ s T - Observed 1.8 0.9 Expected CMS-PAS-HIG-16-027 ± **1**σ 0.8 1.6 $\sin \theta =$ ± **2**σ 0.7 1.4 0.6 1.2 $H^{\pm} \rightarrow W^{\pm}Z \rightarrow qqII$ 0.5 1 0.4 **Observed** (CLs) 0.8 Expected (CLs) 0.3 ATLAS ±1σ 0.6 0.2 ±**2**σ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ 0.4 0.1E Γ_{μ±}/m_{μ±}>15% 0.2 200 300 400 500 600 700 800 900 1000 400 600 200 800 1000 m_{⊔±} [GeV] m_{µ⁼} [GeV]

ATLAS 1503.04233 $\sin^2 \theta_H = \text{fraction of } M_{W,Z}^2 \text{ generated by isospin-triplet vev.}$ Heather Logan (Carleton U.) Higgs/Top/EW: interpretation/outlook/ideas ICHEP 2016

3) Portion of $M_{W,Z}$ from isospin-triplet (or larger) scalars?

VBF $\rightarrow H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ feeds into LHC measurement of VBF $\rightarrow W^{\pm}W^{\pm}$ cross section (3.6 σ significance in Run 1, ATLAS 1405.6241 PRL)

Theory projection based solely on extrapolation of 7+8 TeV xsec measurement (dedicated expt selection could improve this)

New ideas 2 – Effective Field Theory approach

A theme of Run-2: being used in Higgs, top, and EW (esp. VBS)

New Physics at a scale Λ , pure SM below \rightarrow EFT cut off by Λ \rightarrow NP encoded in coefficients of higher-dimension operators

Just like measuring Wilson coefficients in *B* physics: agnostic!

- A real theory: can calculate systematically to higher orders, incorporate scale-dependent constraints (e.g. LEP EW)

- Allows to take advantage of kinematic distributions: TGCs/QGCs

Validity of EFT requires event energies $< \Lambda$: - $E > \Lambda$: see NP resonances!

- $E \sim \Lambda$: expansion in powers

of Λ no longer reliable.

Josh Kunkle's talk

Heather Logan (Carleton U.) Higgs/Top/EW: interpretation/outlook/ideas ICHEP 2016

6

New ideas 2 – Effective Field Theory approach

Tools coming onto the market:

1) NLO SMEFT model in MadGraph5_aMC@NLO Cen Zhang's talk $tbW/ttZ/tt\gamma$, top-Higgs, FCNC top operators Captures important QCD corrections to operator mixing, kinematic distributions

New ideas 3 – Neutral Naturalness

Top quark gives the largest contribution to the Higgs mass radiative correction: its cancellation is most important for naturalness

But searches for coloured top partners (top squark, fermionic top-partners) continue to push up their mass limits

 \Rightarrow Could the top-partners be uncharged (neutral) under QCD?

- Much smaller production cross sections at LHC
- Could be quite light, weak scale: excellent for naturalness!

Not a new idea: original model papers 2005-06

- "Twin Higgs" Chacko, Goh & Harnik, hep-ph/0506256
- "Folded supersymmetry" Burdman, Chacko, Goh & Harnik, hep-ph/0609152

Stabilize the "little hierarchy" up to \sim 10 TeV scale: same spirit as little Higgs models (but with top partners neutral under QCD).

Idea has become very popular in past couple of years as limits on coloured top-partners make SUSY, little Higgs, etc. less natural.

New ideas 3 – Neutral Naturalness

Need (approximate) symmetry that protects Higgs mass.

SM is "twinned" with a mirror sector:

- mirror top charged under mirror QCD (not our QCD): neutral!
- discovered Higgs is linear combination of the two sectors
- mirroring of entire SM \rightarrow cosmological problems: model-building
- "folded SUSY": mirror stops color-neutral but weak-charged

Signatures: highly model dependent

- top-partners could be electroweak-charged: like chargino searches
- exotic Higgs decays into mirror sector (depends on spectrum)
- mirror QCD glueballs could decay back to SM: "emerging jets"
- folded SUSY: colored SUSY partners still can't be too heavy

Only generic signature:

Higgs must be linear combination of our sector & mirror sector. \rightarrow Universal suppression of Higgs couplings by mixing angle $\cos \theta$. Probe with signal strengths: LHC Run 1, $\mu = 1.09^{+0.11}_{-0.10}$ 1606.02266 $\rightarrow \cos^2 \theta = (1 - v^2/f^2) > 0.89 \Rightarrow v/f < 0.33$, $\sim 30\%$ tuning.

New ideas 4 – Naturalness from cosmological relaxation

Radically different idea to solve the hierarchy problem using self-
organized criticalityGraham, Kaplan & Rajendran, 1504.07551

- Couple Higgs to axion-like field: $\mathcal{L} \supset (-M^2 + g\phi)|H|^2 + \cdots$
- ϕ slow-rolls down its potential during inflation (need inflaton too)
- When $-(-M^2 + g\phi)$ goes negative, Higgs gets a vev
- Turns on periodic axion-potential barriers, stops rolling of ϕ

Predictions:

- axion-like dark matter
- maybe nothing at colliders :(
- intimately connected to infla-
- ϕ tion model: cosmo signatures?
 - higher-scale UV completion, e.g. SUSY at 10^7 GeV

Very new idea; modelbuilding ongoing

Jason Evans' & Michael Fedderke's talks

Summary

The first analyses of 13–15 fb⁻¹ of data at $\sqrt{s} = 13$ TeV have revealed no surprises, but 10x more data to come by end of 2018.

- Precision measurements of Higgs, electroweak, and top physics
- Probe high-scale New Physics through effective operators
- Dig deep for new weakly-interacting physics below TeV scale Heather Logan (Carleton U.) Higgs/Top/EW: interpretation/outlook/ideas ICHEP 2016