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Introduction

If all we knew were QED and QCD, we could write down fermion

masses as

L = −mf̄RfL + h.c.

But in the Standard Model, fermions are chiral: fL and fR have

different SU(2)×U(1) quantum numbers.

The mass term above is not gauge invariant!

We also know that the W and Z bosons have a nonzero mass.

This also violates gauge invariance!

Massless gauge bosons have two polarizations; massive ones have

three:

Where does the third polarization degree of freedom come from?



The simplest solution (thanks to this clever person −→ )

The Higgs mechanism

Introduce a scalar “Higgs” field H

– doublet under SU(2)

– carries U(1) hypercharge

Write down couplings of H to gauge bosons (via the covariant

derivative) and to fermions (Yukawa couplings, L = yf f̄LHfR).

– These are all gauge invariant.

Write down a mass and self-interaction for H: the Higgs potential

V = m2H†H + λ(H†H)2

– also gauge invariant.



Now the trick:

Choose the signs of the terms in the Higgs potential.

V = m2H†H + λ(H†H)2

m2 is negative

λ is positive (why? we don’t know.)

The Higgs potential looks like this:



The zero field value is an unsta-

ble equilibrium.

The Higgs field instead sits in

the minimum of the potential,

at nonzero field value.

This breaks the SU(2)×U(1)

symmetry spontaneously.



At the minimum of the potential (the ground state), the Higgs

field has a nonzero vacuum expectation value v.

〈H〉 = (0, v/
√

2)

The fermions get masses and couplings to the physical Higgs

field: L = yfvf̄RfL + yfHf̄RfL + h.c.

The gauge bosons get masses and couplings to the physical Higgs

field: L = (g2v2/4)W+W−+ (g2v/2)HW+W−

Notice that the mass is proportional to the Higgs coupling!

And we know the proportionality constant since we know the

gauge coupling g and the W boson mass: v = 246 GeV.

Test of the Higgs mass-generation mechanism in the Standard

Model: Measure the Higgs couplings to SM particles.
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0.02761±0.00036
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Theory uncertainty

Unique predictions for Higgs

branching fractions in the SM –

only unknown parameter is the

Higgs mass.

Electroweak precision data is

sensitive to Higgs mass through

radiative corrections

−→ fit to Higgs mass, assuming

SM.

Combined LEP and Teva-

tron (mt, MW ) data favor an

intermediate-mass Higgs in the

SM.

Most interesting mass range:

lots of decay branching ratios

are large enough to be accessi-

ble!



Beyond the Standard Model, Higgs couplings could be different.

For example: MSSM

The MSSM has two Higgs doublets, H1 and H2
with two different vacuum expectation values, v1 and v2.

These must obey v2
1 + v2

2 = v2
SM to give the correct W boson

mass.
There is one unknown combination, v2/v1 = tanβ .

Down-type quarks and charged leptons get mass from H1.
Up-type quarks get mass from H2.
W and Z bosons get mass from both H1 and H2.

The lightest MSSM Higgs boson h is a linear combination of H1
and H2 (by a mixing angle α ).

In most of SUSY parameter space, the couplings of h are pretty
similar to those of the SM Higgs. But any deviations from the
SM expectation will tell us a lot about the structure of the Higgs
sector!



The far future:

International Linear Collider



Why an e+e− collider?

Clean environment – no large QCD backgrounds

Well-known initial state – no parton distributions;

energy/momentum of initial state known

E. Accomando et al., Phys.Rept.299, 1 (1998)

Large cross sections

(a) (b)

>∼ 100 fb−1 per year

Lots of events



Model-independent technique: Z recoil

(a) (b)

Use 4-momentum conservation to reconstruct Higgs events look-

ing only at the recoiling Z.

Initial state: e− −→ ?←− e+

p(e−) = (Ecm/2,0,0, Ecm/2), p(e+) = (Ecm/2,0,0,−Ecm/2)

Initial 4-momentum = p(e−) + p(e+) = (Ecm,0,0,0)

Final state: Z ←− ? −→ H

Z decays to dileptons (e+e− or µ+µ−) and the Higgs goes off in

the other direction.

Measure the 4-momenta of the Z decay leptons: p(`−) and p(`+).

Require that p(`−) and p(`+) reconstruct the Z:

[p(`−) + p(`+)]2 = M2
Z

Use energy-momentum conservation to get the Higgs 4-momentum:

p(Higgs) = p(e−) + p(e+)− p(`−)− p(`+) .
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“Recoil mass” is

[p(Higgs)]2 = M2
H.

See a Higgs mass peak in the Z

recoil spectrum.

Count events in the recoil Higgs mass peak: get the ZH cross section.

Count Higgs decay products in the recoil Higgs mass peak: get the Higgs
branching ratios.

Model-independent!!

ZH cross section measurement does not depend on Higgs decay mode.

BR measurements do not depend on production cross-section assumptions.



Next, measure HWW coupling: WW fusion

(a) (b)

Look for (e.g.) Higgs −→ b̄b plus missing mass:
ZH, Z → νν̄ and WW fusion → H.
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If nothing funny is going on in the WWH coupling, can add in
WW fusion events for increased statistics in BR measurements.
(No longer model-independent.)



Measure Higgs branching ratios to high precision!
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For a 120 GeV SM-like Higgs boson:

BR b̄b WW ∗ ττ cc̄ gg γγ
Precision 2.4% 5.1% 5.0% 8.3% 5.5% 23%

K. Desch, hep-ph/0311092



Determine Higgs total width:

1. Measure BR(W) = Γ(H→WW)/Γtot

2. Measure HWW coupling and calculate Γ(H →WW )

(a) Measure HZZ coupling from e+e− → Zh total cross sec-

tion then use SU(2) relation for HWW coupling, OR

(b) Measure WW fusion → Higgs cross section times BR(H→
bb̄) and use BR(H→ bb̄) from ZH to get HWW coupling

3. Solve for Γtot

Both the ZH and WW fusion techniques give a total cross section

measurement of about 6%.



Use the high-precision measurements of Higgs couplings to look
for deviations from the Standard Model
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Example:

MSSM benchmark

scenarios

Contours of

δBR(b) = 3%, 6%

(solid),

δBR(W) = 8%, 16%

(long-dashed),

δBR(g) = 8%, 16%

(short-dashed)

(∼ 1, 2 sigma).



Combine multiple Higgs couplings into a chi-squared:
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Chi-squared con-

tours combining

g2
hbb, g2

hττ , and g2
hgg.

Right to left: 68,

90, 95, 98 and 99%

confidence levels.



Another Linear collider option: Photon collider

Use Compton backscattering to produce high-energy photon beam:

high-energy electron + low-energy photon (laser)

−→ low-energy electron + high-energy photon

Can produce Higgs bosons in the s-channel via loop-induced γγ →
H coupling.

Aim for a better measurement of the Hγγ coupling!

e+e− collider, 120 GeV SM-like Higgs boson:
BR b̄b WW ∗ ττ cc̄ gg γγ

Precision 2.4% 5.1% 5.0% 8.3% 5.5% 23%
K. Desch, hep-ph/0311092



Higgs production at a photon collider

Higgs is produced via the loop-induced γγH coupling.
−→ Sensitive to New Physics running in the loop!

Asner et al, 2001

γγ → H → b̄b
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• Rate for γγ → H → b̄b can be mea-

sured to about 2% for

115 GeV ≤MH <∼ 140 GeV.

• b̄b will be the best-measured decay

mode for this Higgs mass range in γγ

collisions.

• Compare LHC or LC: Γγ to 15−20%.



Example: Corrections to γγ → H in the Littlest Higgs model

• γγ → H is loop induced: TeV-scale charged particles W±H , T ,

Φ±, Φ±± can run in the loops.

• Higgs couplings to SM particles are modified due to mixing

between SM and TeV-scale particles and corrections to SM pa-

rameters.

Han, H.L., McElrath, Wang ’03
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The near future:

Large Hadron Collider



If the Higgs is Standard Model-like, LHC will discover it.
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Higgs will be accessible via multiple production mechanisms –

Key to determining Higgs couplings!
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√s = 14 TeV

Mt = 175 GeV

CTEQ4M
gg→H

qq→Hqqqq
_
’→HW

qq
_
→HZ

gg,qq
_
→Htt

_

gg,qq
_
→Hbb

_

MH [GeV]
0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

1

10

10 2

0 100 200 300 400 500 600 700 800 900 1000

M. Spira, Fortsch. Phys. 46, 203 (1998)

gluon fusion,

gg → H

weak boson fusion,

qq → Hqq

WH, ZH

associated

production

ttH associated

production



The Higgs couplings fix the production cross sections and decay

branching ratios −→ determine the rates in each channel.

By measuring rates in multiple channels, various combinations

of couplings can be determined.

Take ratios of rates with same production and different decays:

production cross section and Higgs total width cancel out.

WBF → H →WW ∗

WBF → H → ττ
=

Γ(H →WW ∗)

Γ(H → ττ)
∝

g2
HWW

g2
Hττ

(1)

Take ratios of rates with different production and same decay:

decay BRs cancel out.

gg → H → γγ

WH, H → γγ
=

σ(gg → H)

σ(qq̄ →WH)
∝

g2
Hgg

g2
HWW

(2)

Ratios of Higgs couplings-squared to WW ∗, ZZ∗, γγ, ττ and gg

can be extracted to 15–30% for MH = 120 GeV.

Zeppenfeld et al., PRD62, 013009 (2000)



Ratios of couplings are better than nothing.
But we want to get the individual couplings if we can!

No missing-mass spectrum measurement like at LC. :-(
Some decays cannot be directly observed at LHC due to back-
grounds: H → gg, H → light quarks, ...

Absolute measurements of partial decay widths are only possible
with additional theoretical assumptions.

Some strategies:

• Assume no unexpected decay channels
−→ total width extraction from observed modes

• Assume SM ratio of H couplings to b̄b and ττ Zeppenfeld, Kin-

nunen, Nikitenko, Richter-Was (2000) – needed since no b̄b channel
included in analysis (tough – QCD bg).
−→ Not necessarily true in MSSM!

Improved analysis Belyaev & Reina, (2002) included ttH, H → b̄b

channel to remove b̄b/ττ assumption.



A new strategy:
Dührssen, Heinemeyer, H.L., Rainwater, Weiglein & Zeppenfeld (2004)

Assume HWW and HZZ couplings are bounded from above by
their SM values.
A mild assumption: true in general multi-Higgs-doublet models
(with or without additional Higgs singlets) – MSSM!
No assumptions on unexpected/unobserved Higgs decay modes.

Observation of Higgs production
xxx −→ lower bound on production couplings
xxxxxx −→ lower bound on Higgs total width.

Theoretical constraint ΓV ≤ ΓSM
V

⊕ measurement of Γ2
V /Γtot from WBF → H → V V

xxx −→ upper bound on Higgs total width.

This interplay provides constraints on remaining Higgs couplings.

A second approach: fit the observed rates to a particular model.
E.g., chi-squared fits in specific MSSM scenarios.



Higgs boson channels

GF gg → H → ZZ

WBF qqH → qqZZ

GF gg → H →WW

WBF qqH → qqWW

tt̄H, H →WW

WH, H →WW

Inclusive H → γγ

WBF qqH → qqγγ

tt̄H, H → γγ

WH, H → γγ

ZH, H → γγ

WBF qqH → qqττ

tt̄H, H → b̄b

GF = gluon fusion
WBF = weak boson fusion



Systematic uncertainties:
correlated between the various channels.

5% overall Luminosity normalization

Theory uncertainties on Higgs production:
20% GF
15% tt̄H
7% WH, ZH
4% WBF

Reconstruction/identification efficiencies:
2% leptons
2% photons
3% b quarks
3% τ jets
5% forward tagging jets and veto jets (WBF)

Background extrapolation from side-bands (shape):
from 0.1% for H → γγ
to 5% for H →WW and H → ττ
to 10% for H → b̄b



Fit all the Higgs couplings:

Method good in general multi-Higgs-doublet models.

• Assume g2
W,Z < 1.05

(
g2
W,Z

)
SM

(Extra 5% margin allows for theoretical uncertainties in the trans-

lation between couplings-squared and partial widths and also for

small admixtures of exotic Higgs states, like SU(2) triplets.)

• Allow for possibility of additional particles running in the loops

for H → γγ and gg → H, fitted by a positive or negative new

partial width to these contributions.

• Allow for additional light hadronic decays, fitted with a partial

width for unobservable decays.

(Invisible decays, e.g. Higgs → neutralinos, could still be ob-

servable at the LHC in WBF Eboli & Zeppenfeld (2000). Not yet

considered in our fit.)



Put all the LHC measurements into a chi-squared.

Find the maximum excursion of each Higgs coupling at 1-sigma.

Our fit assumptions constrain the error ellipse in directions with

otherwise-uncontrolled correlations.

Assume three LHC luminosity scenarios:

• Low lumi, 30 fb−1 × 2 detectors

• High lumi, 300 fb−1 × 2 detectors

• Mixed, 300 fb−1, with only 100 fb−1 usable for WBF channels,

× 2 detectors

The WBF channels have not yet been studied for high-luminosity

LHC running:

The “Mixed” scenario will be important if underlying events from

high-lumi running significantly degrade the efficiency of WBF

channels.



Fit of Higgs couplings-squared: precisions

Low lumi Mixed lumi
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High lumi about the same

except τ improves.



Fit of unobservable decays, new particles in gg, γγ loops

Low lumi Mixed lumi
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High lumi about the same.



Use the sensitivity to Higgs couplings to look for deviations from
the Standard Model

Example: MSSM, mmax
h scenario
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Sensitive to MSSM nature of h up to MA <∼ 350 GeV!
(mmax

h , 5σ, high lumi)



Impressive sensitivity! Where does it come from?

– mostly from WBF channels.

mmax
h , 5σ, high lumi

 3

 4

 5
 6
 7
 8
 9

 10

 20

 30

 200  300  400  500  600  700

ta
n 

β

MA  (GeV)

mh = 130 GeV

125 GeV

5σ

mh
max scenario

2 * 300 fb-1

full fit
WBF only

all but WBF
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MSSM Higgs couplings:

• hWW , hZZ, hgg, hγγ decouple

quickly

• hb̄b, hττ decouple slowly!

• BR(h→WW ) decouples

slowly – sensitive to hb̄b via Γtot.

• WBF qqH → qqWW sensitive

to BR(h→WW )

• But systematics (lumi 5%,

WBF thy 4%, tag/veto jets 5%)

kill the sensitivity!

• Need to combine with WBF

qqH → qqττ to normalize out the

systematics.



Other MSSM scenarios:

benchmarks from Carena, Heinemeyer, Wagner, Weiglein (2003)
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Sensitivity depends strongly on MSSM parameters!

−→ Need more information before one can use h coupling devi-

ations as an indirect measurement of MA.



Going further at the LHC: non-standard Higgs scenarios

bbH associated production: could be visible in SUSY with large

tanβ. Use together with H → b̄b.

H → µµ: could be visible at large tanβ or if other decays are

suppressed.

WBF Plehn & Rainwater; gluon fusion Han & McElrath

H → invisible: could be significant in SUSY, or models with

scalar dark matter.

WBF Eboli & Zeppenfeld; ZH Davoudiasl, Han & H.L., in progress



Conclusions

Upcoming high-energy physics experiments will illuminate the

twin mysteries of electroweak symmetry breaking and particle

mass.

A Linear Collider will give us high-precision, model-independent

measurements of the Higgs couplings to SM particles.

1–few %-level measurements

The LHC will be sensitive to Higgs couplings, but theoretical

assumptions are needed to overcome correlations/degeneracies

caused by incomplete data.

10–40%-level measurements

The next step: refine the LHC studies, improve understanding

of signals and backgrounds, add more channels for standard and

nonstandard Higgs decays.



LHC starts in 3 years...

We will soon test the mass

generation mechanism and

probe for new physics in the

electroweak symmetry breaking

sector!


