The alignment limit in the Georgi-Machacek model

Heather Logan
Carleton University
Ottawa, Canada

NonMinimalHiggs collaboration meeting
Lisbon, Portugal
September 3, 2018
Work in progress with Pedro Ferreira, Howie Haber, and Yongcheng Wu, arXiv:18xx.XXXXX

NSERC CRSNG

Outline

Introduction

Basics of the Georgi-Machacek model

The alignment limit

Phenomenology

Conclusions \& outlook

Introduction

LHC measurements of h_{125} couplings are consistent with SM, with uncertainties $\delta \kappa \sim 10 \%$ and shrinking.

Relevant to study the alignment limit of extended Higgs models:

- Tree-level couplings of h_{125} become equal to their SM values
- Additional Higgs bosons can be weak-scale
(As distinct from alignment due to decoupling in which additional Higgs bosons are very heavy.)

Thoroughly studied in 2 HDM: choose α so that $\sin (\beta-\alpha) \rightarrow 1$

- Useful for systematizing searches for additional Higgs bosons

This talk: alignment in the Georgi-Machacek model

Georgi-Machacek model Georgi \& Machacek 1985; Chanowitz \& Golden 1985

SM Higgs (bi-)doublet + triplets $(1,0)+(1,1)$ in a bi-triplet:

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Global SU(2) $L_{L} \times \mathrm{SU}(2)_{R} \rightarrow$ custodial symmetry $\left\langle\chi^{0}\right\rangle=\left\langle\xi^{0}\right\rangle \equiv v_{\chi}$ (ensures $\rho=1$)

Most general scalar potential invariant under $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$:

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2} \\
& +\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right) \\
& +\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

9 parameters, 2 fixed by G_{F} and $m_{h} \rightarrow 7$ free parameters. Aoki \& Kanemura, 0712.4053

Hartling, Kumar \& HEL, 1404.2640

SM Higgs (bi-)doublet + triplets $(1,0)+(1,1)$ in a bi-triplet:

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Global $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R} \rightarrow$ custodial symmetry $\left\langle\chi^{0}\right\rangle=\left\langle\xi^{0}\right\rangle \equiv v_{\chi}$
Physical spectrum:
Bi-doublet: $2 \otimes 2 \rightarrow 1 \oplus 3 \quad$ Bi-triplet: $3 \otimes 3 \rightarrow 1 \oplus 3 \oplus 5$

- Two custodial singlets mix $\rightarrow h^{0}, H^{0} m_{h}, m_{H}$, angle α Usually identify $h^{0}=h(125)$
- Two custodial triplets mix $\rightarrow\left(H_{3}^{+}, H_{3}^{0}, H_{3}^{-}\right) m_{3}+$ Goldstones Phenomenology very similar to $H^{ \pm}, A^{0}$ in 2 HDM Type I, $\tan \beta \rightarrow \cot \theta_{H}$
- Custodial fiveplet $\left(H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}\right) m_{5}$ Fermiophobic; $H_{5} V V$ couplings $\propto s_{H} \equiv \sqrt{8} v_{\chi} / v_{\text {SM }}$ $s_{H}^{2} \equiv$ exotic fraction of M_{W}^{2}, M_{Z}^{2}
Heather Logan (Carleton U.)
GM alignment limit
Lisbon Sept 2018

Alignment limit: all tree-level couplings of $h_{125} \rightarrow$ SM values.

$$
h=c_{\alpha} \phi^{0, r}-s_{\alpha} H_{1}^{0 \prime}, \quad H_{1}^{0 \prime} \equiv \sqrt{\frac{1}{3}} \xi^{0, r}+\sqrt{\frac{2}{3}} \chi^{0, r}
$$

Tree-level couplings of h :

$$
\kappa_{f}^{h}=\frac{c_{\alpha}}{c_{H}}, \quad \quad \kappa_{V}^{h}=c_{\alpha} c_{H}-\sqrt{\frac{8}{3}} s_{\alpha} s_{H}
$$

Alignment requires both $s_{H} \rightarrow 0^{*}$ and $s_{\alpha} \rightarrow 0$.
*I.e., triplet vevs $\rightarrow 0$.

Can show that

$$
s_{H}=\frac{2 \sqrt{2} M_{1} v}{4 m_{3}^{2}-2 \lambda_{5} v^{2}}
$$

Decoupling: $m_{3} \rightarrow \infty$.
Alignment: $M_{1} \rightarrow 0$.

Can also show that

$$
s_{\alpha}^{2}=\frac{\frac{3}{4} v_{\phi}^{2}\left[4\left(2 \lambda_{2}-\lambda_{5}\right) v_{\chi}-M_{1}\right]^{2}}{\left(m_{H}^{2}-m_{h}^{2}\right)\left(m_{H}^{2}-8 \lambda_{1} v_{\phi}^{2}\right)}
$$

Decoupling: $m_{H} \rightarrow \infty$.
Alignment: $4\left(2 \lambda_{2}-\lambda_{5}\right) v_{\chi}-M_{1} \rightarrow 0$.

No second alignment condition required:
$v_{\chi} \equiv s_{H} v / \sqrt{8}$ and $M_{1} \rightarrow 0$ sends $s_{\alpha} \rightarrow 0$ automatically.

Spectrum in the alignment limit: (λ_{5} can be positive or negative)

$$
\begin{aligned}
m_{H}^{2} & =\mu_{3}^{2}+\left(2 \lambda_{2}-\lambda_{5}\right) v^{2} \\
m_{3}^{2} & =m_{H}^{2}+\frac{1}{2} \lambda_{5} v^{2} \\
m_{5}^{2} & =m_{H}^{2}+\frac{3}{2} \lambda_{5} v^{2}
\end{aligned}
$$

Mass spectrum controlled by 2 parameters: one overall scale m_{H} and one splitting parameter λ_{5}.

Phenomenology

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2} \\
& +\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right) \\
& +\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

Alignment limit: $M_{1} \rightarrow 0$
Chanowitz \& Golden 1985
Setting $M_{1}=0$ and $M_{2}=0$ preserves an exact Z_{2} symmetry, unbroken when $v_{\chi}=0 \longrightarrow$ lightest Z_{2}-odd particle is stable.

We do not want this! Keep $M_{2} \neq 0$.
Alignment due to $M_{1} \rightarrow 0$ is a fine-tuned accident, but this is also true in the 2HDM.

Extra Higgs bosons consist entirely of $\operatorname{SU}(2)$ triplet and are still SM-phobic at tree level!

Trilinear coupling M_{2} among $\mathrm{SU}(2)$ triplets \Rightarrow scalar triangle diagrams induce decays of extra Higgs bosons to $V V(V=\gamma, Z, W)$.

Phenomenology

Higgs-to-Higgs cascade decays (tree-level) will happen when kinematically allowed: $H \rightarrow H_{3} \rightarrow H_{5}$ or $H_{5} \rightarrow H_{3} \rightarrow H$

Lightest new scalar (H_{5}^{0} or H) will decay via scalar loop diagram. Potential for large $\operatorname{BR}\left(H_{i}^{0} \rightarrow \gamma \gamma\right)$: easy to detect!

Production via Drell-Yan: cross section \propto gauge coupling

- $p p \rightarrow H_{5}^{0} H_{5}^{ \pm}, H_{5}^{0} H_{3}^{ \pm}, H_{5}^{0} H_{3}^{0}$
- $p p \rightarrow \mathrm{HH}_{3}^{ \pm}, \mathrm{HH}_{3}^{0}$

Need to compute BR to $\gamma \gamma$.
$H, H_{5}^{0} \rightarrow \gamma \gamma, Z \gamma$ are easy to compute.
$H, H_{5}^{0} \rightarrow Z Z, W^{+} W^{-}$are not so easy!

Phenomenology

Two approaches:
(1) Buckle down and calculate them. FeynRules/FormCalc \Rightarrow numerical results (done by Yongcheng)
(2) Effective operator + gauge invariance (works when mass splittings can be neglected; $\Lambda=$ mass of new scalars)

Only one dimension-5 operator: (+ many dimension-7 operators)

$$
\mathcal{O}_{5}=\frac{c_{5}}{\Lambda} \xi^{a} W_{\mu \nu}^{a} B^{\mu \nu}
$$

Use definitions of Z and γ to write all the effective couplings in terms of one (e.g., $H_{5}^{0} \rightarrow \gamma \gamma$).

Notice $H, H_{5}^{0} \rightarrow W^{+} W^{-}=0$: true when mass splittings are zero.

Phenomenology

Branching ratios of H in alignment limit (blue $=\gamma \gamma$)

Dashed lines: single effective operator approximation

Positive $\Delta m^{2} \longrightarrow H \rightarrow H_{3} V$ decays open up
$m_{3}^{2}=m_{H}^{2}-\frac{1}{2} \Delta m^{2} \quad m_{5}^{2}=m_{H}^{2}-\frac{3}{2} \Delta m^{2}$

Phenomenology

Branching ratios of H_{5}^{0} in alignment limit (blue $=\gamma \gamma$)

Dashed lines: single effective operator approximation

Negative $\Delta m^{2} \longrightarrow H_{5}^{0} \rightarrow H_{3} V$ decays open up $m_{3}^{2}=m_{5}^{2}+\Delta m^{2} \quad m_{H}^{2}=m_{5}^{2}+\frac{3}{2} \Delta m^{2}$

Phenomenology

$$
p p \rightarrow H H_{3}^{ \pm}, H H_{3}^{0} \quad p p \rightarrow H_{5}^{0} H_{5}^{ \pm}, H_{5}^{0} H_{3}^{ \pm}, H_{5}^{0} H_{3}^{0}
$$

PRELIMINARY

$$
H \rightarrow \gamma \gamma
$$

$$
H_{\underline{5}}^{0} \rightarrow \gamma \gamma
$$

LHC diphoton resonance searches, black $=8 \mathrm{TeV}$; red $=13 \mathrm{TeV}$ Color scale $=\sigma \times \mathrm{BR}$ at 13 TeV

Interesting exclusions for masses up to $\sim 400 \mathrm{GeV}$!

Conclusions and outlook

The Georgi-Machacek model possesses an alignment limit, toward which we are increasingly being driven as measurements constrain h_{125} couplings to their SM values.

Exact alignment has dramatic phenomenological consequences, with $H \rightarrow \gamma \gamma$ or $H_{5}^{0} \rightarrow \gamma \gamma$ leading to strong exclusions below about 400 GeV .

Next step: study approach to alignment: how far can we go from exact alignment until the $\gamma \gamma$ decays are no longer significant?

An interesting tangent: the approach to alignment in the $Z_{2^{-}}$ symmetric model. Must generate v_{χ} through spontaneous symmetry breaking - as $v_{\chi} \rightarrow 0, m_{H} \rightarrow 0$ too! Can we completely exclude this version of the model?

BACKUP SLIDES

Distinctive processes:
$\mathrm{VBF} \rightarrow H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$
$\mathrm{VBF} \rightarrow H_{5}^{ \pm} \rightarrow W^{ \pm} Z$
N.B. Not useful in alignment limit!
$V B F+$ like-sign dileptons + MET
$\mathrm{VBF}+q q \ell \ell ; \mathrm{VBF}+3 \ell+\mathrm{MET}$

Cross section $\propto s_{H}^{2} \equiv$ fraction of M_{W}^{2}, M_{Z}^{2} due to exotic scalars

Searches

SM VBF $\rightarrow W^{ \pm} W^{ \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}+$MET cross section measurement

ATLAS Run 1 1405.6241, PRL 2014
Recast to constrain VBF $\rightarrow H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}+$MET
Chiang, Kanemura, Yagyu, 1407.5053

Heather Logan (Carleton U.)

GM alignment limit
Lisbon Sept 2018

Searches

VBF $H_{5}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm} \rightarrow \ell^{ \pm} \ell^{ \pm}+$MET (CMS Run 1)

CMS 1410.6315, PRL 2015

Translated using VBF $\rightarrow H^{ \pm \pm}$cross sections from LHCHXSWG-2015-001

VBF $H_{5}^{ \pm} \rightarrow W^{ \pm} Z \rightarrow \ell^{ \pm} \ell^{+} \ell^{-}+$MET (ATLAS Run 2)

Stronger upper bound on s_{H} for $m_{5} \in(700,900) \mathrm{GeV}$ compared to $H_{5}^{ \pm \pm}$

