

The alignment limit in the Georgi-Machacek model

Heather Logan Carleton University Ottawa, Canada

NonMinimalHiggs collaboration meeting Lisbon, Portugal September 3, 2018

Work in progress with Pedro Ferreira, Howie Haber, and Yongcheng Wu, arXiv:18xx.xxxx

Outline

Introduction

Basics of the Georgi-Machacek model

The alignment limit

Phenomenology

Conclusions & outlook

Introduction

LHC measurements of h_{125} couplings are consistent with SM, with uncertainties $\delta \kappa \sim 10\%$ and shrinking.

Relevant to study the alignment limit of extended Higgs models:

- Tree-level couplings of h_{125} become equal to their SM values
- Additional Higgs bosons can be weak-scale

(As distinct from alignment due to decoupling in which additional Higgs bosons are very heavy.)

Thoroughly studied in 2HDM: choose α so that $sin(\beta - \alpha) \rightarrow 1$

- Useful for systematizing searches for additional Higgs bosons

This talk: alignment in the Georgi-Machacek model

Heather Logan (Carleton U.) GM alignment limit Lisbo

Georgi-Machacek model Georgi & Machacek 1985; Chanowitz & Golden 1985

SM Higgs (bi-)doublet + triplets (1,0) + (1,1) in a bi-triplet:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

Global SU(2)_L×SU(2)_R \rightarrow custodial symmetry $\langle \chi^0 \rangle = \langle \xi^0 \rangle \equiv v_{\chi}$ (ensures $\rho = 1$)

Most general scalar potential invariant under $SU(2)_L \times SU(2)_R$:

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger} X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(X^{\dagger} X) + \lambda_3 \operatorname{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 [\operatorname{Tr}(X^{\dagger} X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger} t^a X t^b) - M_1 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U X U^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger} t^a X t^b) (U X U^{\dagger})_{ab}$$

9 parameters, 2 fixed by G_F and $m_h \rightarrow 7$ free parameters. Aoki & Kanemura, 0712.4053 Chiang & Yagyu, 1211.2658; Chiang, Kuo & Yagyu, 1307.7526 Hartling, Kumar & HEL, 1404.2640

Lisbon Sept 2018

GM alignment limit

Heather Logan (Carleton U.)

Georgi-Machacek model Georgi & Machacek 1985; Chanowitz & Golden 1985

SM Higgs (bi-)doublet + triplets (1,0) + (1,1) in a bi-triplet:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

Global SU(2)_L×SU(2)_R \rightarrow custodial symmetry $\langle \chi^0 \rangle = \langle \xi^0 \rangle \equiv v_{\chi}$

Physical spectrum:

Bi-doublet: $2 \otimes 2 \rightarrow 1 \oplus 3$

 $\text{Bi-triplet: } \mathbf{3}\otimes\mathbf{3}\rightarrow\mathbf{1}\oplus\mathbf{3}\oplus\mathbf{5}$

- Two custodial singlets mix $\rightarrow h^0$, H^0 m_h , m_H , angle α Usually identify $h^0 = h(125)$
- Two custodial triplets mix $\rightarrow (H_3^+, H_3^0, H_3^-) m_3 + \text{Goldstones}$ Phenomenology very similar to H^{\pm}, A^0 in 2HDM Type I, $\tan \beta \rightarrow \cot \theta_H$
- Custodial fiveplet $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--}) m_5$ Fermiophobic; H_5VV couplings $\propto s_H \equiv \sqrt{8}v_\chi/v_{\rm SM}$ $s_H^2 \equiv$ exotic fraction of M_W^2 , M_Z^2

Heather Logan (Carleton U.) G

GM alignment limit

Alignment limit: all tree-level couplings of $h_{125} \rightarrow SM$ values.

$$h = c_{\alpha}\phi^{0,r} - s_{\alpha}H_{1}^{0'}, \qquad \qquad H_{1}^{0'} \equiv \sqrt{\frac{1}{3}}\xi^{0,r} + \sqrt{\frac{2}{3}}\chi^{0,r}$$

Tree-level couplings of h:

$$\kappa_f^h = \frac{c_\alpha}{c_H}, \qquad \qquad \kappa_V^h = c_\alpha c_H - \sqrt{\frac{8}{3}} s_\alpha s_H$$

Alignment requires both $s_H \rightarrow 0^*$ and $s_\alpha \rightarrow 0$.

*I.e., triplet vevs \rightarrow 0.

Can show that

$$s_H = \frac{2\sqrt{2}M_1v}{4m_3^2 - 2\lambda_5 v^2}$$

Decoupling: $m_3 \rightarrow \infty$. Alignment: $M_1 \rightarrow 0$.

Heather Logan (Carleton U.)

GM alignment limit

Can also show that

$$s_{\alpha}^{2} = \frac{\frac{3}{4}v_{\phi}^{2} \left[4(2\lambda_{2} - \lambda_{5})v_{\chi} - M_{1}\right]^{2}}{(m_{H}^{2} - m_{h}^{2})(m_{H}^{2} - 8\lambda_{1}v_{\phi}^{2})}$$

Decoupling: $m_H \to \infty$. Alignment: $4(2\lambda_2 - \lambda_5)v_{\chi} - M_1 \to 0$.

No second alignment condition required: $v_{\chi} \equiv s_H v / \sqrt{8}$ and $M_1 \rightarrow 0$ sends $s_{\alpha} \rightarrow 0$ automatically.

Spectrum in the alignment limit: (λ_5 can be positive or negative)

$$m_{H}^{2} = \mu_{3}^{2} + (2\lambda_{2} - \lambda_{5})v^{2}$$

$$m_{3}^{2} = m_{H}^{2} + \frac{1}{2}\lambda_{5}v^{2}$$

$$m_{5}^{2} = m_{H}^{2} + \frac{3}{2}\lambda_{5}v^{2}$$

Mass spectrum controlled by 2 parameters: one overall scale m_H and one splitting parameter λ_5 .

Heather Logan (Carleton U.)

GM alignment limit

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger} X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(X^{\dagger} X) + \lambda_3 \operatorname{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 [\operatorname{Tr}(X^{\dagger} X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger} t^a X t^b) - M_1 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U X U^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger} t^a X t^b) (U X U^{\dagger})_{ab}$$

Alignment limit: $M_1 \rightarrow 0$

Chanowitz & Golden 1985

Setting $M_1 = 0$ and $M_2 = 0$ preserves an exact Z_2 symmetry, unbroken when $v_{\chi} = 0 \longrightarrow$ lightest Z_2 -odd particle is stable.

We do not want this! Keep $M_2 \neq 0$.

Alignment due to $M_1 \rightarrow 0$ is a fine-tuned accident, but this is also true in the 2HDM.

Extra Higgs bosons consist entirely of SU(2) triplet and are still SM-phobic at tree level!

Trilinear coupling M_2 among SU(2) triplets \Rightarrow scalar triangle diagrams induce decays of extra Higgs bosons to VV ($V = \gamma, Z, W$).

Heather Logan (Carleton U.) GM alignment limit

Higgs-to-Higgs cascade decays (tree-level) will happen when kinematically allowed: $H \rightarrow H_3 \rightarrow H_5$ or $H_5 \rightarrow H_3 \rightarrow H$

Lightest new scalar $(H_5^0 \text{ or } H)$ will decay via scalar loop diagram. Potential for large BR $(H_i^0 \rightarrow \gamma \gamma)$: easy to detect!

Production via Drell-Yan: cross section \propto gauge coupling - $pp \rightarrow H_5^0 H_5^{\pm}$, $H_5^0 H_3^{\pm}$, $H_5^0 H_3^0$ - $pp \rightarrow H H_3^{\pm}$, $H H_3^0$

Need to compute BR to $\gamma\gamma$.

H,
$$H_5^0 \rightarrow \gamma\gamma, Z\gamma$$
 are easy to compute.
H, $H_5^0 \rightarrow ZZ, W^+W^-$ are not so easy!

Heather Logan (Carleton U.)

GM alignment limit

Two approaches:

(1) Buckle down and calculate them. FeynRules/FormCalc \Rightarrow numerical results (done by Yongcheng)

(2) Effective operator + gauge invariance (works when mass splittings can be neglected; $\Lambda =$ mass of new scalars)

Only one dimension-5 operator: (+ many dimension-7 operators)

$$\mathcal{O}_5 = \frac{c_5}{\Lambda} \xi^a W^a_{\mu\nu} B^{\mu\nu}$$

Use definitions of Z and γ to write all the effective couplings in terms of one (e.g., $H_5^0 \rightarrow \gamma \gamma$).

Notice $H, H_5^0 \rightarrow W^+W^- = 0$: true when mass splittings are zero. Heather Logan (Carleton U.) GM alignment limit Lisbon Sept 2018

Branching ratios of H in alignment limit (blue = $\gamma\gamma$)

Dashed lines: single effective operator approximation

Positive $\Delta m^2 \longrightarrow H \rightarrow H_3 V$ decays open up $m_3^2 = m_H^2 - \frac{1}{2}\Delta m^2$ $m_5^2 = m_H^2 - \frac{3}{2}\Delta m^2$

Heather Logan (Carleton U.)

GM alignment limit

Branching ratios of H_5^0 in alignment limit (blue = $\gamma\gamma$)

Dashed lines: single effective operator approximation

Negative $\Delta m^2 \longrightarrow H_5^0 \rightarrow H_3 V$ decays open up $m_3^2 = m_5^2 + \Delta m^2$ $m_H^2 = m_5^2 + \frac{3}{2} \Delta m^2$

Heather Logan (Carleton U.)

GM alignment limit

$pp \rightarrow HH_3^{\pm}$, HH_3^0

$pp \rightarrow H_5^0 H_5^{\pm}, \ H_5^0 H_3^{\pm}, \ H_5^0 H_3^{\pm}$

LHC diphoton resonance searches, black = 8 TeV; red = 13 TeV Color scale = $\sigma \times BR$ at 13 TeV

Interesting exclusions for masses up to ~ 400 GeV!

Heather Logan (Carleton U.)

GM alignment limit

Conclusions and outlook

The Georgi-Machacek model possesses an alignment limit, toward which we are increasingly being driven as measurements constrain h_{125} couplings to their SM values.

Exact alignment has dramatic phenomenological consequences, with $H \rightarrow \gamma \gamma$ or $H_5^0 \rightarrow \gamma \gamma$ leading to strong exclusions below about 400 GeV.

Next step: study approach to alignment: how far can we go from exact alignment until the $\gamma\gamma$ decays are no longer significant?

An interesting tangent: the approach to alignment in the Z_2 -symmetric model. Must generate v_{χ} through spontaneous symmetry breaking – as $v_{\chi} \rightarrow 0$, $m_H \rightarrow 0$ too! Can we completely exclude this version of the model?

Heather Logan (Carleton U.) GM alignment limit

BACKUP SLIDES

Heather Logan (Carleton U.)

GM alignment limit

Distinctive processes:

$$\mathsf{VBF} \to H_5^{\pm\pm} \to W^\pm W^\pm$$

$$\mathsf{VBF} \to H_5^{\pm} \to W^{\pm}Z$$

N.B. Not useful in alignment limit!

VBF + like-sign dileptons + MET

 $VBF + qq\ell\ell; VBF + 3\ell + MET$

Cross section $\propto s_{H}^{2} \equiv$ fraction of M_{W}^{2}, M_{Z}^{2} due to exotic scalars

Heather Logan (Carleton U.)

GM alignment limit

Searches

SM VBF $\rightarrow W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell^{\pm} + \text{MET}$ cross section measurement ATLAS Run 1 1405.6241, PRL 2014 Recast to constrain VBF $\rightarrow H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell^{\pm} + \text{MET}$

Heather Logan (Carleton U.)

GM alignment limit

Searches

VBF $H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell^{\pm} + \text{MET} (\text{CMS Run 1})$

CMS 1410.6315, PRL 2015

Translated using VBF $\rightarrow H^{\pm\pm}$ cross sections from LHCHXSWG-2015-001

Heather Logan (Carleton U.)

GM alignment limit

Searches

New this summer!

VBF $H_5^{\pm} \rightarrow W^{\pm}Z \rightarrow \ell^{\pm}\ell^+\ell^- + MET$ (ATLAS Run 2)

ATLAS 1806.01532

Stronger upper bound on s_H for $m_5 \in (700, 900)$ GeV compared to $H_5^{\pm\pm}$

Heather Logan (Carleton U.)

GM alignment limit