New physics in bottomonium decay

Heather Logan
Carleton University
(Ottawa, Canada)

4th Belle II Theory Interface Platform University of Pittsburgh, May 23-25, 2016

Introduction

SuperKEKB/Belle-II offers a new era in high-statistics studies of scalar bottomonium via radiative γ decays $\gamma \rightarrow \gamma \chi_{b 0}$:

- $250 \mathrm{fb}^{-1}$ on $\gamma(3 S) \rightarrow 5.9 \times 10^{7} \chi_{b 0}(2 P)+2.7 \times 10^{6} \chi_{b 0}(1 P)$
- $250 \mathrm{fb}^{-1}$ on $\Upsilon(2 S) \rightarrow 6.2 \times 10^{7} \chi_{b 0}(1 P)$
$\chi_{b 0}$ has the same spin and CP quantum numbers as the Higgs.
Can its decays be used to probe (BSM) Higgs physics?

Precedents:

- $B^{+} \rightarrow \tau^{+} \nu$ sensitive to s-channel charged Higgs Hou 1993
- $\eta_{b} \rightarrow \tau \tau$ sensitive to s-channel CP-odd Higgs Rashed et al 2010
$\rightarrow \chi_{b 0} \rightarrow \tau \tau$ should be sensitive to s-channel CP-even Higgs
Haber, Kane \& Sterling, NPB 1979

$\chi_{b 0} \rightarrow \tau \tau: s$-channel Higgs

Matrix element (SM Higgs exchange):

$$
\mathcal{M}^{H}=\left\langle\ell^{+} \ell^{-}\right| \frac{i m_{\ell}}{v} \bar{\ell} \ell|0\rangle \frac{i}{M_{\chi_{b 0}}^{2}-M_{H}^{2}}\langle 0| \frac{i m_{b}}{v} \bar{b} b\left|\chi_{b 0}\right\rangle
$$

First we need the $\chi_{b 0}$ decay constant,

$$
\langle 0| \bar{b} b\left|\chi_{b 0}\right\rangle=i f_{\chi_{b 0}}
$$

- No Lattice calculation yet
- A few QCD sum-rules results, but we couldn't tell what normalization they used
\rightarrow Computed $f_{\chi_{b 0}}$ using quark model "mock meson" approach

$$
f_{\chi_{b 0}}=-\frac{3 \sqrt{3 M_{\chi_{b 0}}}}{\sqrt{\pi} \tilde{m}_{b}} R^{\prime}(0)= \begin{cases}-4.17 \mathrm{GeV}^{2} & \text { for } \chi_{b 0}(1 P) \\ -4.31 \mathrm{GeV}^{2} & \text { for } \chi_{b 0}(2 P)\end{cases}
$$

($\tilde{m}_{b}=$ constituent quark mass)
Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

$\chi_{b 0} \rightarrow \tau \tau: s$-channel Higgs

Partial width (SM Higgs exchange):

$$
\begin{aligned}
\Gamma^{H}\left(\chi_{b 0} \rightarrow \tau \tau\right) & =\frac{M_{\chi_{b 0}}}{8 \pi}\left[1-\frac{4 m_{\tau}^{2}}{M_{\chi_{b 0}}^{2}}\right]^{3 / 2}\left(\frac{m_{b} m_{\tau}}{v^{2} M_{H}^{2}}\right)^{2} f_{\chi_{b 0}}^{2} \\
& = \begin{cases}4.3 \times 10^{-16} \mathrm{GeV} & \text { for } \chi_{b 0}(1 P) \\
4.8 \times 10^{-16} \mathrm{GeV} & \text { for } \chi_{b 0}(2 P)\end{cases}
\end{aligned}
$$

neglecting $M_{\chi 00}^{2}$ relative to M_{H}^{2} in the propagator

Total widths not measured: combine measured $\chi_{b 0} \rightarrow \gamma \Upsilon(1 S)$ BRs with predictions for that decay's partial width (quark model):

$$
\begin{aligned}
\Gamma_{\chi_{b 0}(1 P)}^{\mathrm{tot}}=1.35 \mathrm{MeV}, & \Gamma_{\chi_{b 0}(2 P)}^{\mathrm{tot}}=(247 \pm 93) \mathrm{keV} \\
\mathrm{BR}^{H}\left(\chi_{b 0}(1 P) \rightarrow \tau \tau\right) & =3.1 \times 10^{-13} \\
\mathrm{BR}^{H}\left(\chi_{b 0}(2 P) \rightarrow \tau \tau\right) & =(1.9 \pm 0.5) \times 10^{-12}
\end{aligned}
$$

Compare $\mathcal{O}\left(10^{7}\right)$ events in $250 \mathrm{fb}^{-1}$: BR way too small in SM !

Can s-channel Higgs contribution be enhanced?

Matrix element (SM Higgs exchange):

$$
\mathcal{M}^{H}=\left\langle\ell^{+} \ell^{-}\right| \frac{i m_{\ell}}{v} \bar{\ell} \ell|0\rangle \frac{i}{M_{\chi_{b 0}}^{2}-M_{H}^{2}}\langle 0| \frac{i m_{b}}{v} \bar{b} b\left|\chi_{b 0}\right\rangle
$$

Tiny BR is due to (1) small b and τ Yukawa couplings and (2) Higgs mass suppression in propagator.
\Rightarrow Consider Type-II two-Higgs-doublet model with (1) enhanced b and τ Yukawas and (2) relatively light non-SM CP-even Higgs boson in propagator

Type-II two-Higgs-doublet model

Two Higgs doublets: Φ_{1} and Φ_{2}
Both contribute to electroweak symmetry breaking:
vacuum expectation values $v_{1}^{2}+v_{2}^{2}=v_{\text {SM }}^{2}, v_{2} / v_{1} \equiv \tan \beta$
Type-II model: specifies pattern of fermion mass generation

- Up-type quark masses from Φ_{2} : coupling strength m_{u} / v_{2}
- Down-type quark, lepton masses from Φ_{1} : coupling strength $m_{d, \ell} / v_{1}$

Physical Higgs states:

- 2 CP-even neutral Higgs bosons, h^{0} (lighter) and H^{0} (heavier)
- 1 CP-odd neutral Higgs boson, A^{0}
- Pair of charged Higgs bosons, $H^{ \pm}$

We will consider the scenario in which:

- The 125 GeV Higgs is very SM-like: call it H_{125}
- The 2nd Higgs boson could be heavier or lighter: call it $H_{n e w}$

Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

Type-II two-Higgs-doublet model: couplings to fermions

$$
\begin{aligned}
h^{0} V_{\mu} V^{\mu}: & 2 i \frac{M_{V}^{2}}{v} \sin (\beta-\alpha) \\
h^{0} \bar{u} u: & -i \frac{m_{u}}{v}[\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha)] \\
h^{0} \bar{d} d: & -i \frac{m_{d}}{v}[\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha)] \\
H^{0} V_{\mu} V^{\mu}: & 2 i \frac{M_{V}^{2}}{v} \cos (\beta-\alpha) \\
H^{0} \bar{u} u: & -i \frac{m_{u}}{v}[-\cot \beta \sin (\beta-\alpha)+\cos (\beta-\alpha)] \\
H^{0} \bar{d} d: & -i \frac{m_{d}}{v}[\tan \beta \sin (\beta-\alpha)+\cos (\beta-\alpha)]
\end{aligned}
$$

(leptons same as down-type quarks with $m_{d} \rightarrow m_{\ell}$)

For simplicity (and accordance with LHC data), assume H_{125} couplings are exactly SM-like: "alignment limit". For $H_{125}=h^{0}\left(H^{0}\right)$,

$$
H_{\mathrm{new}} \bar{u} u:-i \frac{m_{u}}{v}[\mp \cot \beta] \quad H_{\mathrm{new}} \bar{d} d:-i \frac{m_{d}}{v}[\pm \tan \beta]
$$

Large $\tan \beta \rightarrow$ large enhancement of $H_{\text {new }} \bar{b} b, H_{\text {new }} \bar{\tau} \tau$ couplings.

$\chi_{b 0} \rightarrow \tau \tau: s$-channel H_{125} and $H_{\text {new }}$

Matrix element (alignment limit for H_{125}):

$$
\begin{aligned}
\mathcal{M}^{H}= & \left\langle\ell^{+} \ell^{-}\right| \frac{i m_{\ell}}{v} \bar{\ell} \ell|0\rangle \frac{i}{M_{\chi_{b 0}}^{2}-M_{H_{125}}^{2}}\langle 0| \frac{i m_{b}}{v} \bar{b} b\left|\chi_{b 0}\right\rangle \\
& +\left\langle\ell^{+} \ell^{-}\right| \frac{i m_{\ell} \tan \beta}{v} \bar{\ell} \ell|0\rangle \frac{i}{M_{\chi_{b 0}}^{2}-M_{H_{\mathrm{new}}}^{2}}\langle 0| \frac{i m_{b} \tan \beta}{v} \bar{b} b\left|\chi_{b 0}\right\rangle
\end{aligned}
$$

Including $H_{\text {new }}$ exchange the partial width becomes:

$$
\begin{aligned}
\Gamma^{H}\left(\chi_{b 0} \rightarrow \tau \tau\right)= & \frac{M_{\chi_{b 0}}}{8 \pi}\left[1-\frac{4 m_{\tau}^{2}}{M_{\chi_{b 0}}^{2}}\right]^{3 / 2}\left(\frac{m_{b} m_{\tau}}{v^{2} M_{H_{125}}^{2}}\right)^{2} f_{\chi_{b 0}}^{2} \\
& \times\left[1+\frac{M_{H_{125}}^{2} \tan ^{2} \beta}{M_{\text {new }}^{2}-M_{\chi_{b 0}}^{2}}\right]^{2}
\end{aligned}
$$

The Higgs-mediated BRs are also multiplied by this factor:

$$
\left.\begin{array}{l}
\mathrm{BR}^{H}\left(\chi_{b 0}(1 P) \rightarrow \tau \tau\right)=3.1 \times 10^{-13} \\
\mathrm{BR}^{H}\left(\chi_{b 0}(2 P) \rightarrow \tau \tau\right)=(1.9 \pm 0.5) \times 10^{-12}
\end{array}\right\} \times\left[1+\frac{M_{H_{125}}^{2} \tan ^{2} \beta}{M_{\text {new }}^{2}-M_{\chi_{b 0}}^{2}}\right]^{2}
$$

Will only need ($M_{H_{125}} / M_{H_{\text {new }}}$) $\tan \beta \sim 30$ for $\mathcal{O}(100)$ signal events in $\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P) \rightarrow \gamma \tau \tau$ Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

Experimental strategy

Parent	Daughter	E_{γ}	δE_{γ}	$d \sigma_{B} / d E_{\gamma}$	N_{B}
$\gamma(3 S)$	$\chi_{b 0}(2 P)$	122 MeV	0.24 MeV	$36 \mathrm{fb} / \mathrm{MeV}$	4320
$\gamma(3 S)$	$\chi_{b 0}(1 P)$	484 MeV	1.3 MeV	$8.8 \mathrm{fb} / \mathrm{MeV}$	5720
$\gamma(2 S)$	$\chi_{b 0}(1 P)$	163 MeV	1.3 MeV	$30 \mathrm{fb} / \mathrm{MeV}$	19500

- Tagging photon energies E_{γ} in the γ center-of-mass frame
- Linewidth δE_{γ} of the photon peak is determined by $\chi_{b 0}$ width
- Continuum $e^{+} e^{-} \rightarrow \gamma \tau^{+} \tau^{-}$background: differential cross section $d \sigma_{B} / d E_{\gamma}$ at E_{γ} computed using MadGraph (next slide)
- Ignoring reducible background $\gamma \rightarrow \gamma \chi_{b 0}, \chi_{b 0} \rightarrow \operatorname{not} \tau \tau$
- Number N_{B} of continuum background events in a window of width $2 \delta E_{\gamma}$ centered at the photon peak in $250 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$ luminosity at γ resonance

Continuum (irreducible) background: $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-} \gamma$

Used MadGraph5 to compute $d \sigma_{B} / d E_{\gamma}$ at photon energy E_{γ} in CM frame

Cuts: we required only $\left|\eta_{\gamma}\right|<5$ in CM frame
Room for improvement:

- Signal and background have different τ angular distributions with respect to beam line
- Photon distribution relative to beam line and to $\tau^{ \pm}$directions also different
- τ polarization distributions also different

Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

Results: $\Upsilon(3 S)$

Direct search exclusions: HiggsBounds 4.2.0
S. Godfrey and H.E. Logan, 1510.04659

Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

Results: $\Upsilon(3 S)$

\downarrow DELPHI $e^{+} e^{-} \rightarrow b \bar{b} \phi(\rightarrow b \bar{b})$

Direct search exclusions: HiggsBounds 4.2.0
S. Godfrey and H.E. Logan, 1510.04659

Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

Direct search exclusions: HiggsBounds 4.2.0
S. Godfrey and H.E. Logan, 1510.04659

Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

Summary

SuperKEKB/Belle-II offers high statistics sample of bottomonia
$\chi_{b 0}$ is a CP-even neutral scalar: $\chi_{b 0} \rightarrow \tau \tau$ sensitive to light CPeven neutral Higgs with enhanced $b \bar{b}, \tau \tau$ couplings
$250 \mathrm{fb}^{-1}$ on the $\Upsilon(3 S)$ can exclude $M_{h} \equiv M_{\text {new }}<80 \mathrm{GeV}$ for $\tan \beta \geq 20$ [best signal is from $\chi_{b 0}(2 P)$]
$250 \mathrm{fb}^{-1}$ on the $\Upsilon(2 S)$ can exclude $M_{h} \equiv M_{\text {new }}<40 \mathrm{GeV}$ for $\tan \beta \geq 20$ [forced to use $\chi_{b 0}(1 P)$: larger total width means smaller $\operatorname{BR}(\tau \tau)$, more continuum background]

Prospects for improvement with smarter kinematic selection to suppress continuum $e^{+} e^{-} \rightarrow \tau \tau \gamma$ background

BACKUP

$\chi_{b 0} \rightarrow \tau \tau:$ 2-photon process

Rashed, Duraisamy \& Datta, 1004.5419

Estimate using optical theorem:

$$
\Gamma^{2 \gamma}\left(\chi_{b 0} \rightarrow \tau \tau\right) \simeq \frac{\alpha_{\mathrm{em}}^{2}}{2 \beta_{\tau}}\left[\frac{m_{\tau}}{M_{\chi_{b 0}}} \ln \frac{\left(1+\beta_{\tau}\right)}{\left(1-\beta_{\tau}\right)}\right]^{2} \Gamma\left(\chi_{b 0} \rightarrow \gamma \gamma\right)
$$

where

$$
\Gamma\left(\chi_{b 0} \rightarrow \gamma \gamma\right)=\frac{4 \pi \alpha_{\mathrm{em}}^{2}}{81 M_{\chi_{b 0}}^{3}} f_{\chi_{b 0}}^{2} \quad \beta_{\tau}=\sqrt{1-\frac{4 m_{\tau}^{2}}{M_{\chi_{b 0}}^{2}}}
$$

which gives

$$
\begin{aligned}
& \operatorname{BR}^{2 \gamma}\left(\chi_{b 0}(1 P) \rightarrow \tau \tau\right) \simeq 1 \times 10^{-9} \\
& \operatorname{BR}^{2 \gamma}\left(\chi_{b 0}(2 P) \rightarrow \tau \tau\right) \simeq 6 \times 10^{-9}
\end{aligned}
$$

- $3000 \times$ bigger than SM Higgs exchange
- Still <1 event in $250 \mathrm{fb}^{-1}$

Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

Nonresonant signal $\gamma \rightarrow \gamma H_{\text {new }}^{*} \rightarrow \gamma \tau \tau$?

- Photon is not mono-energetic
- For $M_{H_{\text {new }}} \gg M_{\chi_{b 0}}$, event rate is at most a few percent of our main resonant $\gamma \rightarrow \gamma \chi_{b 0} \rightarrow \gamma \tau \tau$ signal

How to calculate, neglecting SM Higgs contribution:

$$
\Gamma\left(\Upsilon \rightarrow \gamma H_{\text {new }}^{*} \rightarrow \gamma \tau \tau\right)=\frac{1}{\pi} \int_{4 m_{\tau}^{2}}^{M_{\uparrow}^{2}} \frac{d Q^{2} Q \Gamma\left(\Upsilon \rightarrow \gamma H_{\text {new }}^{*}\right) \Gamma\left(H_{\text {new }}^{*} \rightarrow \tau \tau\right)}{\left(Q^{2}-M_{\text {new }}^{2}\right)^{2}+M_{\text {new }}^{2} \Gamma_{\text {new }}^{2}}
$$

where

$$
\begin{aligned}
\Gamma\left(\Upsilon \rightarrow \gamma H_{\text {new }}^{*}\right) & =\frac{\left(m_{b} \tan \beta\right)^{2}}{2 \pi \alpha_{\mathrm{em}} v^{2}}\left[1-\frac{Q^{2}}{M_{\curlyvee}^{2}}\right] \Gamma\left(\Upsilon \rightarrow \mu^{+} \mu^{-}\right) \\
\Gamma\left(H_{\text {new }}^{*} \rightarrow \tau \tau\right) & =\frac{\left(m_{\tau} \tan \beta\right)^{2} Q}{8 \pi v^{2}}\left[1-\frac{4 m_{\tau}^{2}}{Q^{2}}\right]^{3 / 2}
\end{aligned}
$$

Integrate numerically over offshell $H_{\text {new }}$ invariant mass Q.

- For $M_{H_{\text {new }}} \sim M_{\chi_{b 0}}$, mixing will become important; we have not considered this
- $M_{H_{\text {new }}}<M_{\Upsilon}$ is excluded by on-shell $\gamma \rightarrow \gamma H_{\text {new }}$

Heather Logan (Carleton U.) New physics in bottomonium decay 4th B2TIP May 2016

