

Higgs physics beyond the Standard Model

Heather Logan Carleton University (Ottawa, Canada)

APS April Meeting 2016 Salt Lake City, Utah, USA

The Standard Model: electroweak symmetry breaking from a scalar $SU(2)_L$ doublet

A one-line theory:

$$\mathcal{L}_{Higgs} = |\mathcal{D}_{\mu}\Phi|^2 - [-\mu^2 \Phi^{\dagger}\Phi + \lambda(\Phi^{\dagger}\Phi)^2] - [y_f \bar{f}_R \Phi^{\dagger}F_L + \text{h.c.}]$$

Most general, renormalizable, gauge-invariant theory involving a single spin-zero (scalar) field with isospin 1/2, hypercharge 1.

 $-\mu^2$ term: vacuum condensate! EW symmetry spontaneously broken; Goldstone bosons gauged away, 1 physical particle h.

Mass and vacuum expectation value of h are fixed by minimizing the Higgs potential:

$$v^2 = \mu^2 / \lambda$$
 $M_h^2 = 2\lambda v^2 = 2\mu^2$

The Standard Model: electroweak symmetry breaking from a scalar $SU(2)_L$ doublet

SM Higgs couplings to SM particles are <u>fixed</u> by the mass-generation mechanism.

W and Z:

$$g_{Z} \equiv g/\cos\theta_{W} = \sqrt{g^{2} + g'^{2}}, v = 246 \text{ GeV}$$

$$\mathcal{L} = |\mathcal{D}_{\mu}\Phi|^{2} \rightarrow (g^{2}/4)(h+v)^{2}W^{+}W^{-} + (g_{Z}^{2}/8)(h+v)^{2}ZZ$$

$$M_{W}^{2} = g^{2}v^{2}/4 \qquad hWW: i(g^{2}v/2)g^{\mu\nu}$$

$$M_{Z}^{2} = g_{Z}^{2}v^{2}/4 \qquad hZZ: i(g_{Z}^{2}v/2)g^{\mu\nu}$$

Fermions:

$$\mathcal{L} = -y_f \bar{f}_R \Phi^{\dagger} F_L + \cdots \rightarrow -(y_f/\sqrt{2})(h+v)\bar{f}_R f_L + \text{h.c.}$$

$$m_f = y_f v/\sqrt{2} \qquad h\bar{f}f: \ im_f/v$$

Gluon pairs and photon pairs:

induced at 1-loop by fermions, W-boson.

LHC measurements of 125 GeV Higgs boson properties are fully consistent with SM picture: ATLAS-CONF-2015-044

But there is still plenty of room for extensions of the Higgs sector.

This talk:

- What else could be condensed in the vacuum?
- How do we search for its excitations?

This talk: Outline

What else could be condensed in the vacuum?

- (1) Additional source of fermion masses?
 - \rightarrow two-Higgs-doublet models
- (2) Additional (non-doublet) source of electroweak breaking?
 - \rightarrow models with higher-isospin scalar multiplets

For each: How do we search for its excitations?

- Properties & signatures of extra Higgs bosons
- Patterns of couplings and spectra
- A few under-exploited search channels

Conclusions

Additional sources of fermion masses?

 \rightarrow Two-Higgs-Doublet Model

Two-Higgs-Doublet Model

"Type-II" model is the Higgs sector of the MSSM (at tree level) Five Higgs states: h, H, A, H^{\pm}

Most-well-known searches: $b\overline{b} \to H/A \to \tau\tau; t \to bH^+ \text{ or } pp \to \overline{t}H^+, H^+ \to \tau\nu$

Also $gg \to H \to WW, ZZ$; $pp \to H/A \to Z + A/H$

Two-Higgs-Doublet Model

Two doublets: Φ_1 and Φ_2 , vevs $v_1^2 + v_2^2 = v_{SM}^2$, $v_2/v_1 \equiv \tan \beta$

- Up-type quark masses from Φ_2 : coupling strength m_u/v_2
- Down-type quark and lepton masses from Φ_2 (Type I) or Φ_1 (Type II): coupling strength $m_{d,\ell}/v_2$ (Type I) or $m_{d,\ell}/v_1$ (Type II)

Five Higgs states (counting H^+ and H^- as two):

$$h = \cos \alpha \, \phi_2^{0,r} - \sin \alpha \, \phi_1^{0,r} \qquad H = \sin \alpha \, \phi_2^{0,r} + \cos \alpha \, \phi_1^{0,r} \\ A = \cos \beta \, \phi_2^{0,i} - \sin \beta \, \phi_1^{0,i} \qquad H^{\pm} = \cos \beta \, \phi_2^{\pm} - \sin \beta \, \phi_1^{\pm}$$

First do a change of basis to the Higgs basis:

 $\Phi_h = \sin\beta \Phi_2 + \cos\beta \Phi_1 \qquad \Phi_0 = \cos\beta \Phi_2 - \sin\beta \Phi_1$

Defined by vacuum expectation values:

 Φ_h vev = v_{SM} , Φ_0 vev = 0

Two-Higgs-Doublet Model: Higgs basis

Five Higgs states (counting H^+ and H^- as two):

$$h = \sin(\beta - \alpha) \phi_h^{0,r} - \cos(\beta - \alpha) \phi_0^{0,r}$$
$$H = \cos(\beta - \alpha) \phi_h^{0,r} + \sin(\beta - \alpha) \phi_0^{0,r}$$
$$A = \phi_0^{0,i} \qquad H^{\pm} = \phi_0^{\pm}$$

Couplings to vector boson pairs: $\phi_h^{0,r}VV$ couplings same as SM, while $\phi_0^{0,r}VV = 0$:

- Couplings of h to VV universally suppressed by $\sin(\beta \alpha) \equiv \kappa_V^h$
- Couplings of H to VV are complementary: $\cos(\beta \alpha) \equiv \kappa_V^H$

Sum rule:
$$(\kappa_V^h)^2 + (\kappa_V^H)^2 = \sin^2(\beta - \alpha) + \cos^2(\beta - \alpha) = 1$$

Q: how big can $\kappa_V^H = \cos(\beta - \alpha)$ be? Controls $H \to WW, ZZ$ and VBF $\to H$ From h coupling measurements: $\kappa_V^h \sim 1 \pm 0.2 \Rightarrow |\kappa_V^H| \lesssim 0.45$ Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016 Perturbative unitarity of $WW \rightarrow WW$ scattering: E^0 term

- combine with sum rule $(\kappa_V^h)^2 + (\kappa_V^H)^2 = 1$:

$$\cos^{2}(\beta - \alpha) \equiv (\kappa_{V}^{H})^{2} < \frac{16\pi v^{2} - 5m_{h}^{2}}{5(m_{H}^{2} - m_{h}^{2})} \simeq \frac{16\pi v^{2}}{5m_{H}^{2}} \simeq \left(\frac{780 \text{ GeV}}{m_{H}}\right)^{2}$$

 $\begin{aligned} \mathsf{Two-Higgs-Doublet\ Model:\ Higgs\ basis\ Haber\ et\ al,\ 1507.00933} \\ \mathcal{V} &= Y_1 H_1^{\dagger} H_1 + Y_2 H_2^{\dagger} H_2 + Y_3 [H_1^{\dagger} H_2 + \mathrm{h.c.}] + \frac{1}{2} Z_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} Z_2 (H_2^{\dagger} H_2)^2 + Z_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) \\ &+ Z_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \left\{ \frac{1}{2} Z_5 (H_1^{\dagger} H_2)^2 + \left[Z_6 (H_1^{\dagger} H_1) + Z_7 (H_2^{\dagger} H_2) \right] H_1^{\dagger} H_2 + \mathrm{h.c.} \right\}, \end{aligned}$ (2) $Y_1, Y_2, Y_3 \sim (\mathsf{mass})^2, \qquad Z_1, \ldots Z_7 \text{ dimensionless} \qquad H_1 \equiv \Phi_h, \ H_2 \equiv \Phi_0 \end{aligned}$

Minimization of potential yields $Y_1 = -Z_1 v^2/2$, $Y_3 = -Z_6 v^2/2$ Only one dimensionful parameter $Y_2 \equiv M^2$, can be large $\gg v^2$

Masses:

$$m_{H^{\pm}}^{2} = Y_{2} + Z_{3}v^{2}/2 \qquad m_{A}^{2} = m_{H^{\pm}}^{2} + (Z_{4} - Z_{5})v^{2}/2$$
$$M_{h,H}^{2} = \begin{pmatrix} Z_{1}v^{2} & Z_{6}v^{2} \\ Z_{6}v^{2} & m_{A}^{2} + Z_{5}v^{2} \end{pmatrix}$$
$$m_{h}^{2} \simeq Z_{1}v^{2} \qquad m_{H}^{2} \simeq M^{2} \qquad \cos(\beta - \alpha) \simeq Z_{6}v^{2}/M^{2} \sim v^{2}/M^{2}$$

 $\Rightarrow \text{Fast decoupling! Bad news for VBF} \rightarrow H \text{ and } H \rightarrow WW/ZZ \text{ at high } m_H$ $\cos^2(\beta - \alpha) = (\kappa_H^H)^2 \sim Z_{\pm}^2 \frac{v^4}{m_H} - Z_{\pm}^2 \left(\frac{246 \text{ GeV}}{246 \text{ GeV}}\right)^4$

$$\cos^2(\beta - \alpha) \equiv (\kappa_V^H)^2 \simeq Z_6^2 \frac{\sigma}{m_H^4} = Z_6^2 \left(\frac{2 \log \log r}{m_H}\right)$$

Two-Higgs-Doublet Model: fermion couplings

Two doublets: Φ_1 and Φ_2 , vevs $v_1^2 + v_2^2 = v_{SM}^2$, $v_2/v_1 \equiv \tan \beta$

- Up-type quark masses from Φ_2 : coupling strength m_u/v_2
- Down-type quark and lepton masses from Φ_2 (Type I) or Φ_1 (Type II): coupling strength $m_{d,\ell}/v_2$ (Type I) or $m_{d,\ell}/v_1$ (Type II)

First do a change of basis to the Higgs basis: Φ_h vev = v_{SM} , Φ_0 vev = 0

$$\Phi_h = \sin\beta \Phi_2 + \cos\beta \Phi_1 \qquad \Phi_0 = \cos\beta \Phi_2 - \sin\beta \Phi_1$$

Physical Higgs states: $\cos(\beta - \alpha) \simeq Z_6 v^2 / M^2 \sim v^2 / M^2$

$$h = \sin(\beta - \alpha) \phi_h^{0,r} - \cos(\beta - \alpha) \phi_0^{0,r}$$
$$H = \cos(\beta - \alpha) \phi_h^{0,r} + \sin(\beta - \alpha) \phi_0^{0,r}$$
$$A = \phi_0^{0,i} \qquad H^{\pm} = \phi_0^{\pm}$$

So $A = \phi_0^{0,i}$, $H^{\pm} = \phi_0^{\pm}$, and for decoupling or alignment $H \simeq \phi_0^{0,r}$: the BSM Higgs bosons all live in the Φ_0 doublet.

Two-Higgs-Doublet Model: fermion couplings

Two doublets: Φ_1 and Φ_2 , vevs $v_1^2 + v_2^2 = v_{SM}^2$, $v_2/v_1 \equiv \tan \beta$

- Up-type quark masses from Φ_2 : coupling strength m_u/v_2
- Down-type quark and lepton masses from Φ_2 (Type I) or Φ_1 (Type II): coupling strength $m_{d,\ell}/v_2$ (Type I) or $m_{d,\ell}/v_1$ (Type II)

First do a change of basis to the Higgs basis: $\Phi_h \text{ vev} = v_{SM}$, $\Phi_0 \text{ vev} = 0$

$$\Phi_h = \sin\beta \Phi_2 + \cos\beta \Phi_1 \qquad \Phi_0 = \cos\beta \Phi_2 - \sin\beta \Phi_1$$

Coupling strengths of Φ_0 to fermions:

Type I: $\cos \beta \times m_f / v_2 = \cot \beta \times m_f / v_{SM}$ (all quarks & leptons)

Type II: $\cos \beta \times m_u / v_2 = \cot \beta \times m_u / v_{SM}$ (up-type) Type II: $\sin \beta \times m_{d,\ell} / v_1 = \tan \beta \times m_{d,\ell} / v_{SM}$ (down-type & leptons)

These are NOT suppressed when the BSM Higgses are heavy! Good news for heavy Higgs production via gluon fusion, $b\overline{b}$ -fusion Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016

13

Two-Higgs-Doublet Model: under-exploited search channels I: $gg \rightarrow H/A \rightarrow t\bar{t}$ at low tan β

Type I: $\cot \beta \times m_f / v_{SM}$ (all quarks & leptons)

Type II: $\cot \beta \times m_u / v_{\rm SM}$ (up-type) Type II: $\tan \beta \times m_{d,\ell} / v_{\rm SM}$ (down-type & leptons)

- Nontrivial interference with continuum $gg \rightarrow t\bar{t}$ background

Dicus, Stange, & Willenbrock, 1994

- Expts need theory prediction including signal/background interference, lineshape, & QCD corrections

- Associated prod'n $pp \to b\overline{b}H/A, \; H/A \to t\overline{t}$ could help at moderate $\tan\beta$

Two-Higgs-Doublet Model: under-exploited search channels II: indirect probe of light h from scalar bottomonium χ_{b0} decay Similar to charged Higgs in $B^+ \to \tau \nu$, pseudoscalar in $\eta_b \to \tau \tau$

Type-II 2HDM, H is 125 GeV SM-like Higgs, lighter $h \subset \Phi_0$ $\Upsilon \to \gamma \chi_{b0}, \chi_{b0} \to \tau \tau$ via off-shell h: rate $\propto \tan^4 \beta / m_h^4$

250 fb⁻¹ on $\Upsilon(3S/2S)$ at Belle-II

S. Godfrey & HEL, 1510.04659

- CMS $pp \rightarrow \phi \rightarrow \tau \tau$ search goes down to 80 GeV HiggsBounds 4.2.0

- Continuum $e^+e^- \rightarrow \gamma \tau \tau$ background: ~4k events under photon peak with no selection cut optimization \rightarrow room for improvement

Additional (non-doublet) sources of electroweak breaking?

 \rightarrow models with higher-isospin scalar multiplets

Part of electroweak breaking from a higher-isospin scalar field?

Fermion masses can arise only from $SU(2)_L$ doublet(s)

$$\mathcal{L} = -y_f \bar{f}_R \Phi^{\dagger} F_L + \dots \rightarrow -(y_f/\sqrt{2})(\phi^{0,r} + v_{\phi}) \bar{f}_R f_L + \text{h.c.}$$

$$m_f = y_f v_{\phi}/\sqrt{2} \qquad \phi^{0,r} \bar{f}f : iy_f/\sqrt{2} = im_f/v_{\phi}$$

 F_L is doublet, f_R is singlet, need Φ doublet for gauge invariance

Top quark Yukawa perturbativity \Rightarrow lower bound on doublet vev: define $\cos \theta_H \equiv v_{\phi}/v_{SM}$, then $\tan \theta_H < 10/3$ (or $\cos \theta_H > 0.287$)

Scalar couplings to fermions come from their doublet content

$$\Phi = \left(\begin{array}{c} \phi^+ \\ (v_\phi + \phi^{0,r} + i\phi^{0,i})/\sqrt{2} \end{array} \right)$$

With other scalar fields in play, Goldstone bosons are linear combinations of different fields.

Part of electroweak breaking from a higher-isospin scalar field?

W and Z masses arise from anything carrying $SU(2)_L \times U(1)_Y$

$$M_W^2 = \frac{g^2}{4} \sum_k 2\left[T_k(T_k+1) - \frac{Y_k^2}{4}\right] v_k^2 = \frac{g^2}{4} v_{SN}^2$$
$$M_Z^2 = \frac{g^2}{4\cos^2\theta_W} \sum_k Y_k^2 v_k^2 = \frac{g^2}{4\cos^2\theta_W} v_{SM}^2$$

 $(Q = T^3 + Y/2)$, vevs defined as $\langle \phi_k^0 \rangle = v_k/\sqrt{2}$ for complex reps and $\langle \phi_k^0 \rangle = v_k$ for real reps) Used Q = 0 for component carrying the vev to simplify expressions

Top Yukawa perturbativity $\rightarrow (v_{\phi}/v_{SM})^2 > (0.287)^2 = 0.082$ \Rightarrow At least 8.2% of $M_{W,Z}^2$ comes from doublet.

Lots of room for higher-isospin scalar contributions!

Can we constrain this exotic possibility?

Problem with higher-isospin scalar fields

 $\rho \equiv$ ratio of strengths of charged and neutral weak currents

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = \frac{\sum_k 2[T_k(T_k + 1) - Y_k^2/4]v_k^2}{\sum_k Y_k^2 v_k^2}$$

 $(Q = T^3 + Y/2)$, vevs defined as $\langle \phi_k^0 \rangle = v_k/\sqrt{2}$ for complex reps and $\langle \phi_k^0 \rangle = v_k$ for real reps) PDG 2014: $\rho = 1.00040 \pm 0.00024$

We can still have higher-isospin scalars with non-negligible vevs; only two approaches using symmetry: (could also tune ρ by hand, but icky)

1) Impose global $SU(2)_L \times SU(2)_R$ symmetry on scalar sector \implies breaks to custodial SU(2) upon EWSB; $\rho = 1$ at tree level Georgi & Machacek 1985; Chanowitz & Golden 1985

2) $\rho = 1$ "by accident" for $(T, Y) = (\frac{1}{2}, 1)$ doublet; (3, 4) septet Septet: Hisano & Tsumura, 1301.6455; Kanemura, Kikuchi & Yagyu, 1301.7303 Larger solutions forbidden by perturbative unitarity of weak charges. Hally, HEL, & Pilkington 1202.5073

The models

1) Models with global $SU(2)_L \times SU(2)_R$ symmetry:

a) Georgi-Machacek model

b) Generalizations to higher isospin

2) Model with a scalar septet (in progress)

All these models share a key common feature:

 $H^{\pm\pm}\leftrightarrow W^{\pm}W^{\pm}$ and $H^{\pm}\leftrightarrow W^{\pm}Z$

with couplings controlled by vev of higher-isospin scalar(s)

Generic experimental probe is diboson resonance search in VBF.

Theoretical origin of common feature: Unitarization of $WW \rightarrow WW$, $WW \rightarrow ZZ$ scattering amplitudes

- SM: Higgs exchange cancels E^2/v^2 term in amplitude.
- 2HDM: cancellation \rightarrow sum rule $(\kappa_V^h)^2 + (\kappa_V^H)^2 = 1$
- Higher-isospin scalars: $(\kappa_V^h)^2 + (\kappa_V^H)^2 > 1$, need $H^{\pm\pm}$ and H^{\pm} in new *u*-channel diagrams: couplings inter-related

Falkowski, Rychkov & Urbano, 1202.1532 (see also Higgs Hunter's Guide)

Georgi-Machacek model Georgi & Machacek 1985; Chanowitz & Golden 1985

SM Higgs bidoublet + two isospin-triplets in a bitriplet:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

Physical spectrum: Custodial symmetry fixes almost everything!

Bidoublet: $2 \times 2 \rightarrow 3 + 1$ Bitriplet: $3 \times 3 \rightarrow 5 + 3 + 1$

- Two custodial singlets mix $\rightarrow h^0$, H^0
- Two custodial triplets mix $\rightarrow (H_3^+, H_3^0, H_3^-)$ + Goldstones
- Custodial fiveplet $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--})$ unitarizes $VV \rightarrow VV$

Georgi-Machacek model Georgi & Machacek 1985; Chanowitz & Golden 1985

SM Higgs bidoublet + two isospin-triplets in a bitriplet:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

Physical spectrum: Custodial symmetry fixes almost everything!

Bidoublet: $2 \times 2 \rightarrow 3 + 1$ Bitriplet: $3 \times 3 \rightarrow 5 + 3 + 1$

- Two custodial singlets mix $\rightarrow h^0$, $H^0 m_h$, $m_H \leftarrow (very similar)$
- Two custodial triplets mix $\rightarrow (H_3^+, H_3^0, H_3^-) m_3 \leftarrow \text{to 2HDM})$
- Custodial fiveplet $(H_5^{++}, H_5^{+}, H_5^{0}, H_5^{-}, H_5^{--}) m_5 \leftarrow \text{new!}$

Generalized Georgi-Machacek models

Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL & Rentala 2015

Replace the bitriplet with a $bi-n-plet \implies "GGMn"$

Bidoublet: $2 \times 2 \rightarrow 3 + 1$ Biquartet: $3 \times 3 \rightarrow 5 + 3 + 1$ Biquartet: $4 \times 4 \rightarrow 7 + 5 + 3 + 1$ Bipentet: $5 \times 5 \rightarrow 9 + 7 + 5 + 3 + 1$ Bisextet: $6 \times 6 \rightarrow 11 + 9 + 7 + 5 + 3 + 1$

Larger bi-*n*-plets forbidden by perturbative unitarity of weak charges! Hally, HEL, & Pilkington 1202.5073

- Two custodial singlets mix $\rightarrow h^0$, H^0
- Two custodial triplets mix $\rightarrow (H_3^+, H_3^0, H_3^-)$ + Goldstones
- Custodial fiveplet $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--})$ unitarizes $VV \rightarrow VV$
- Additional states

Phenomenology: custodial fiveplet $H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--}$

Custodial-fiveplet comes only from higher-isospin scalars: no couplings to fermions!

 $s_H^2 \equiv$ fraction of M_W^2, M_Z^2 from higher-isospin scalar H_5VV couplings are nonzero: very different from 2HDM!

Coupling strength depends on the isospins of the scalars involved:

 $g_5^{GM} = \sqrt{2}s_H, \quad g_5^{GGM4} = \sqrt{\frac{24}{5}}s_H, \quad g_5^{GGM5} = \sqrt{\frac{42}{5}}s_H, \quad g_5^{GGM6} = \frac{8}{\sqrt{5}}s_H$ Direct probe of higher-isospin vacuum condensate! Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016 Constraint from VBF $H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow$ same-sign dileptons

Theorist-recasting of ATLAS $W^{\pm}W^{\pm}jj$ cross-section measurement ATLAS, 1405.6241

 \Rightarrow put limit on VBF $\rightarrow H_5^{\pm\pm}$ cross section, directly constrain g_5

Chiang, Kanemura & Yagyu, 1407.5053

Good news for VBF production (compared to 2HDM $(\kappa_V^H)^2 \sim v^4/m_H^4$) Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016

HEL & Rentala, 1502.01275

$$g_5^{\text{GM}} = \sqrt{2}s_H, \quad g_5^{\text{GGM4}} = \sqrt{\frac{24}{5}}s_H, \quad g_5^{\text{GGM5}} = \sqrt{\frac{42}{5}}s_H, \quad g_5^{\text{GGM6}} = \frac{8}{\sqrt{5}}s_H$$

Note: $s_H^2 \equiv$ exotic fraction of $M_{W,Z}^2$ is *least* constrained in original Georgi-Machacek model. Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016

28

Constraint from VBF $H_5^{\pm} \rightarrow W^{\pm}Z \rightarrow qq\ell^+\ell^-$

Dedicated ATLAS search for singly-charged resonance in VBF, using Georgi-Machacek model as benchmark

Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016

29

 $H_5^{\pm} \rightarrow W^{\pm}Z$ exclusion not quite as strong as $H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$, but more data is coming.

ATLAS 1503.04233

HEL & Rentala, 1502.01275,

after Chiang, Kanemura & Yagyu, 1407.5053,

after ATLAS, 1405.6241

Straightforward to translate constraint from Georgi-Machacek model onto its higher-isospin generalizations.

What about lower H_5 masses? pair production, $H_5^{++} \rightarrow W^+W^+$

Constraint on $H^{\pm\pm}H^{\mp\mp} + H^{\pm\pm}H^{\mp}$ in Higgs Triplet Model from recasting ATLAS like-sign dimuons search ATLAS, 1412.0237

Kanemura, Kikuchi, Yaqyu & Yokoya, 1412.7603

Adapt to generalized Georgi-Machacek models using

$$\sigma_{\rm tot}^{\rm NLO}(pp \to H_5^{\pm\pm}H_5^{--})_{\rm GM} = \sigma_{\rm tot}^{\rm NLO}(pp \to H^{\pm\pm}H^{--})_{\rm HTM},$$

$$\sigma_{\rm tot}^{\rm NLO}(pp \to H_5^{\pm\pm}H_5^{\mp})_{\rm GM} = \frac{1}{2}\sigma_{\rm tot}^{\rm NLO}(pp \to H^{\pm\pm}H^{\mp})_{\rm HTM}.$$

Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016

What about lower H_5 masses?

pair production, $H_5^0 \rightarrow \gamma \gamma$

Scalar pair prod'n $q\bar{q}' \rightarrow W^* \rightarrow H_5^0 H_5^{\pm}$: large xsec at low mass Fermiophobic H_5^0 : decays to $\gamma\gamma$ dominate at low mass

Take advantage of 8 TeV LHC diphoton cross-section limits!

Excludes $m_5 \lesssim 110~{
m GeV}$ independent of exotic vev

For illustration: plot neglects charged scalar loop contributions to $H_5^0 \rightarrow \gamma \gamma$ (full model scan is feasible)

Delgado, Garcia-Pepin, Quirós, Santiago, & Vega-Morales, 1603.00962

 $H_5^+ \rightarrow W^+ \gamma$ also interesting: BR implementation in progress Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016

Conclusions

LHC Higgs measurements are (so far) consistent with the SM

But there is still room for New Physics in the electroweaksymmetry-breaking sector: additional scalar fields condensed in the vacuum!

(1) Additional source of fermion masses?

 \rightarrow two-Higgs-doublet models

(2) Additional (non-doublet) source of electroweak breaking?

 \rightarrow models with higher-isospin scalar multiplets

The more these contribute to EW breaking/fermion masses, the harder they are to hide from experiments.

- $H/A \rightarrow t\bar{t}$: probe low-tan β window of 2HDM
- VBF $H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$, $H_5^{\pm} \rightarrow W^{\pm}Z$: probe higher-isospin vev
- Fermiophobic scalar pair production at low mass: $\gamma\gamma$ and $W\gamma$

BACKUP

Septet model (work in progress)

Two CP-even neutral scalars:

$$h^{0} = c_{\alpha}\phi^{0,r} - s_{\alpha}\chi^{0,r}, \qquad H^{0} = s_{\alpha}\phi^{0,r} + c_{\alpha}\chi^{0,r}$$

One CP-odd neutral scalar: ($c_H \equiv v_{\phi}/v_{\sf SM}$ as usual)

$$A^{\mathsf{0}} = -s_H \phi^{\mathsf{0},i} + c_H \chi^{\mathsf{0},i}$$

Two charged scalars:

(one fermiophilic and one vectorphilic, but they mix in general)

$$H_f^+ = -s_H \phi^+ + c_H \left(\sqrt{\frac{5}{8}} \chi^{+1} - \sqrt{\frac{3}{3}} (\chi^{-1})^* \right),$$

$$H_V^+ = \sqrt{\frac{3}{8}} \chi^{+1} + \sqrt{\frac{5}{8}} (\chi^{-1})^*$$

A doubly-charged scalar, that couples to W^+W^+ :

$$H^{++} = \chi^{+2}$$

Some higher-charged states:

$$\chi^{+3}, \qquad \chi^{+4}, \qquad \chi^{+5}$$

- No H_5^0 ; would-be H_5^+ can mix with fermiophilic state
- Rely on H^{++} to constrain higher-isospin vacuum condensate

Septet model (work in progress)

$$H^{++}W^{-}_{\mu}W^{-}_{\nu}: i \frac{2M^{2}_{W}}{v_{SM}}(\sqrt{15}s_{H})g_{\mu\nu}$$

VBF $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ is as good as ever! \rightarrow VBF likesign dileptons

VBF $H^{\pm} \rightarrow W^{\pm}Z$ loses its clean interpretation: $H^{+} \rightarrow \bar{f}f$ competes with $W^{+}Z$; $m_{H^{+}} \neq m_{H^{++}}$ in general

No custodial symmetry: unitarity bound on s_H at high $m_{H^{++}}$ is modified, but still remains useful.

Analysis of LHC constraints on septet-state pair production (trileptons; like-sign dileptons) excludes low masses $\rightarrow M_{\text{septet}} \gtrsim 400 \text{ GeV}$ Alvarado, Lehman & Ostdiek, 1404.3208

Perturbative unitarity of $WW \rightarrow WW$ scattering: E^2 term

- SM: Higgs exchange cancels E^2/v^2 term in amplitude.

- 2HDM: To preserve cancellation at $E\gg m_H$, need a sum rule: $(\kappa_V^h)^2+(\kappa_V^H)^2=1$

Two-Higgs-Doublet Model: mass splittings

At high mass $H \simeq \phi_0^{0,r}$, $A = \phi_0^{0,i}$, $H^{\pm} = \phi_0^{\pm}$: the BSM Higgses all live (mostly) in a single doublet.

Mass splittings within an SU(2) multiplet come only from EWSB:

$$m_{H^{\pm}}^{2} = Y_{2} + Z_{3}v^{2}/2 \qquad m_{A}^{2} = m_{H^{\pm}}^{2} + (Z_{4} - Z_{5})v^{2}/2$$
$$M_{h,H}^{2} = \begin{pmatrix} Z_{1}v^{2} & Z_{6}v^{2} \\ Z_{6}v^{2} & m_{A}^{2} + Z_{5}v^{2} \end{pmatrix}$$
$$\Delta m^{2} \sim \lambda v^{2} \text{ and } m^{2} \sim M^{2} \implies \Delta m \sim \lambda v^{2}/M$$

Mass splittings $\Delta m \sim \lambda v \times v/M$

Heavy states become increasingly degenerate at high mass

Compare fermionic decay widths $\propto M$ at fixed coupling (bosonic decay widths $\propto (v^4/M^4) \times M^3 \sim 1/M$ due to coupling suppression)

Both have theoretical "issues":

1) Global $SU(2)_L \times SU(2)_R$ is broken by gauging hypercharge.

Gunion, Vega & Wudka 1991 Special relations among param's of *full* gauge-invariant scalar potential can only hold at one energy scale: violated by running due to hypercharge. Garcia-Pepin, Gori, Quiros, Vega, Vega-Morales, Yu 2014

Need the UV completion to be nearby!

2) Can't give the septet a vev through spontaneous breaking without generating a physical massless Goldstone boson.

Have to couple it to the SM doublet through a dimension-7 $X\Phi^*\Phi^5$ term Hisano & Tsumura 2013

Need the UV completion to be nearby!

But we need a nearby UV completion to solve the hierarchy problem anyway.

How large can the isospin be?

Consider 2 \rightarrow 2 scattering amplitudes for $\phi \phi \rightarrow V_T V_T$: transverse SU(2)_L gauge bosons

- no growth with E^2 ; amplitude depends on weak charges & number of ϕ 's

How large can the isospin be?

Consider 2 \rightarrow 2 scattering amplitudes for $\phi \phi \rightarrow V_T V_T$: transverse SU(2)_L gauge bosons

- no growth with E^2 ; amplitude depends on weak charges & number of ϕ 's

General result for complex scalar multiplet with n = 2T + 1:

$$a_0^{\max} = \frac{g^2}{16\pi} \frac{(n^2 - 1)\sqrt{n}}{2\sqrt{3}}$$

- Real scalar multiplet: divide by $\sqrt{2}$ to account for smaller number of ϕ 's
- More than one multiplet: add a_0 's in quadrature

Unitarity: require largest amplitude a_0^{max} satisfies $|\text{Re} a_0| < 1/2$:

- Complex multiplet $\Rightarrow T \leq 7/2$ (8-plet)
- Real multiplet $\Rightarrow T \leq 4$ (9-plet)
- Constraints tighter if more than one large multiplet is present (generally required in $SU(2)_L \times SU(2)_R$ -symmetric models)

Essentially a requirement that the weak charges not be too large.

Phenomenology: custodial fiveplet $H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--}$

Custodial-fiveplet comes only from higher-isospin scalars: no couplings to fermions!

 $s_H^2 \equiv$ fraction of M_W^2, M_Z^2 from higher-isospin scalar H_5VV couplings are nonzero: very different from 2HDM!

But g_5 is also fixed by $VV \rightarrow VV$ unitarization sum rule:

$$(\kappa_V^h)^2 + (\kappa_V^H)^2 - \frac{5}{6}g_5^2 = 1$$

Falkowski, Rychkov & Urbano, 1202.1532 (see also Higgs Hunter's Guide) (relies on custodial symmetry in scalar sector; same in all GGM models) Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016 Detail:

SM + real triplet ξ : $\rho > 1$

SM + complex triplet χ (Y = 2): $\rho < 1$

Combine them both: $\langle \chi^0 \rangle = v_{\chi}$, $\langle \xi^0 \rangle = v_{\xi}$; doublet $\langle \phi^0 \rangle = v_{\phi}/\sqrt{2}$

$$\rho = \frac{v_{\phi}^2 + 4v_{\xi}^2 + 4v_{\chi}^2}{v_{\phi}^2 + 8v_{\chi}^2} = 1 \text{ when } v_{\xi} = v_{\chi}$$

To avoid this being fine-tuned, enforce $v_{\xi} = v_{\chi}$ using a symmetry.

 $SU(2)_L \times SU(2)_R$ global symmetry on scalar potential:

- present by accident in SM Higgs sector
- breaks to diagonal subgroup $SU(2)_{custodial}$ upon EWSB

hWW coup can be enhanced in models with triplets (or larger):

- SM + some multiplet X:
$$2i\frac{M_W^2}{v}g_{\mu\nu}\cdot\frac{v_X}{v}2\left[T(T+1)-\frac{Y^2}{4}\right]_{(Q=T^3+Y/2)}$$

- scalar with isospin ≥ 1
- must have a non-negligible vev
- must mix into the observed Higgs \boldsymbol{h}

Motivation for enhanced hVV couplings

Simultaneous enhancement of all the h couplings can hide a non-SM contribution to the Higgs width.

LHC measures rates in particular final states:

$$\mathsf{Rate}_{ij} = \frac{\sigma_i \Gamma_j}{\Gamma_{\mathsf{tot}}} = \frac{\kappa_i^2 \sigma_i^{\mathsf{SM}} \cdot \kappa_j^2 \Gamma_j^{\mathsf{SM}}}{\sum_k \kappa_k^2 \Gamma_k^{\mathsf{SM}} + \Gamma_{\mathsf{new}}}$$

All rates will be identical to SM Higgs if all $\kappa_i \equiv \kappa \geq 1$ and

$$\kappa^2 = \frac{1}{1 - BR_{new}}$$
 $BR_{new} \equiv \frac{\Gamma_{new}}{\kappa^2 \Gamma_{tot}^{SM} + \Gamma_{new}}$

Coupling enhancement hides presence of new decays! New decays hide presence of coupling enhancement!

Constraint on Γ^{tot} (equivalently on κ) from off-shell $gg (\rightarrow h^*) \rightarrow ZZ$ assumes no new resonances in *s*-channel: a light *H* can cancel effect of modified *h* couplings. 1412.7577

Study concrete models in which $\kappa > 1$ to gain insight.

Most general scalar potential:

Aoki & Kanemura, 0712.4053

Chiang & Yagyu, 1211.2658; Chiang, Kuo & Yagyu, 1307.7526 Hartling, Kumar & HEL, 1404.2640

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger} X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(X^{\dagger} X) + \lambda_3 \operatorname{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 [\operatorname{Tr}(X^{\dagger} X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger} t^a X t^b) - M_1 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U X U^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger} t^a X t^b) (U X U^{\dagger})_{ab}$$

9 parameters, 2 fixed by M_W and $m_h \rightarrow$ free parameters are m_H , m_3 , m_5 , v_{χ} , α plus two triple-scalar couplings.

Dimension-3 terms usually omitted by imposing Z_2 sym. on X. These dim-3 terms are essential for the model to possess a decoupling limit!

 $(UXU^{\dagger})_{ab}$ is just the matrix X in the Cartesian basis of SU(2), found using

$$U = \left(\begin{array}{ccc} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\ 0 & 1 & 0 \end{array}\right)$$

Phenomenology I: custodial singlets h^0 , H^0

Vevs:
$$\langle \Phi \rangle = (v_{\phi}/\sqrt{2})I_{2\times 2}$$
, $\langle X_n \rangle = v_n I_{n\times n} \Longrightarrow$ define $c_H = v_{\phi}/v$
Recall $c_H^2 =$ fraction of $M_{W,Z}^2$ coming from doublet vev

Two custodial-singlet states are mixtures of $\phi^{0,r}$ and custodial singlet from higher-isospin scalars:

$$h^{0} = c_{\alpha}\phi^{0,r} - s_{\alpha}H_{1}^{\prime 0}, \qquad H^{0} = s_{\alpha}\phi^{0,r} + c_{\alpha}H_{1}^{\prime 0}$$

Couplings to W^+W^-/ZZ and $\bar{f}f$:

$$\kappa_V^h = c_\alpha c_H - \sqrt{A} s_\alpha s_H \qquad \kappa_f^h = c_\alpha / c_H$$

$$\kappa_V^H = s_\alpha c_H + \sqrt{A} c_\alpha s_H \qquad \kappa_f^H = s_\alpha / c_H$$

Note that $\kappa_V^h \leq [1 + (A - 1)s_H^2]^{1/2}$, saturated when $\kappa_V^H = 0$. \sqrt{A} factor comes from the generators: A = 4T(T + 1)/3

$$A_{GM} = 8/3$$
, $A_{GGM4} = 15/3$, $A_{GGM5} = 24/3$, $A_{GGM6} = 35/3$
(Septet model: $A_7 = 16$)

Large enhancements of κ_V^h possible for large s_H (up to about 3.3):

Impossible to have $\kappa_V^h, \kappa_f^h = 1$ without $s_H \to 0$:

High-precision measurements of Higgs couplings will constrain higher-isospin vacuum condensate.

$$\kappa_V^h = c_{\alpha}c_H - \sqrt{A}s_{\alpha}s_H \qquad \kappa_f^h = c_{\alpha}/c_H$$

 $\kappa_V^H = s_{\alpha}c_H + \sqrt{A}c_{\alpha}s_H \qquad \kappa_f^H = s_{\alpha}/c_H$

Phenomenology II: custodial triplet H_3^+, H_3^0, H_3^-

Couplings to fermions are the same as H^{\pm} , A^{0} in Type-I 2HDM:

$$H_{3}^{0}\bar{u}u: \qquad \frac{m_{u}}{v}\tan\theta_{H}\gamma_{5}, \qquad H_{3}^{0}\bar{d}d: \qquad -\frac{m_{d}}{v}\tan\theta_{H}\gamma_{5},$$
$$H_{3}^{+}\bar{u}d: \qquad -i\frac{\sqrt{2}}{v}V_{ud}\tan\theta_{H}(m_{u}P_{L}-m_{d}P_{R}),$$
$$H_{3}^{+}\bar{\nu}\ell: \qquad i\frac{\sqrt{2}}{v}\tan\theta_{H}m_{\ell}P_{R}.$$

 $ZH_3^+H_3^-$ also the same as in 2HDM: constraints from $b \to s\gamma$, $B_s \to \mu\mu$, R_b , etc translate directly.

Vector-phobic: no H_3VV couplings at tree level.

Constraint from $b \rightarrow s\gamma$

 H_3^+ in the loop: measurement constrains m_3 and $\sin \theta_H$ - Holds for all generalizations of Georgi-Machacek model

- Also constrains septet model, but not identical

Hartling, Kumar & HEL, 1410.5538

Constraint from $b \rightarrow s\gamma$ in original Georgi-Machacek model:

Apply to original Georgi-Machacek model: $s_H^2 < 0.56$ Can constrain because high s_H at high m_3 is theoretically inaccessible. \Rightarrow at least 44% of $M_{W,Z}^2$ is due to doublet vev (Model-dependent bound)

Hartling, Kumar & HEL, 1410.5538 (Light green points excluded by $b
ightarrow s\gamma$)

All the SU(2)_L×SU(2)_R models are the same when expressed in terms of g_5 : use sum rule, $(\kappa_V^h)^2 \le 1 + 5g_5^2/6$

What about lower H_5 masses?

Decay-mode-independent OPAL search for $Z + S^0$ production: constrain $H_5^0 ZZ$ coupling $\propto g_5$ OPAL, hep-ex/0206022

HEL & Rentala, 1502.01275; used HiggsBounds 4.2.0 for OPAL exclusion contour

Takes advantage of mass degeneracy H_5^0 and H_5^{++} Heather Logan (Carleton U.) Higgs physics beyond the Standard Model APS April 2016

$\sim\sim$ Heavy BSM Higgs Rules of Thumb $\sim\sim$

- #1. Heavy Higgs couplings to WW/ZZ generically fall like $1/M_H$ except sometimes there are tighter indirect constraints except in 2HDM they fall like $1/M_H^2$ (reason: no cubic terms in V) SM+triplets model $H_5^{0,\pm,\pm\pm}$ couplings to VV fall like 1/M
- #2. Heavy Higgs couplings to fermions need not be suppressed in Type-II 2HDM can even be enhanced $\sim \tan \beta$ (down-type & leptons) except in SM+singlet where fermion couplings are tied to VV couplings except in SM+triplets where fermion coups due to doublet mixing $\sim v/M$
- #3. Heavy Higgs states become more degenerate at high mass generic for the members of an SU(2) multiplet: $\Delta m \sim \lambda v^2/M$

Spectrum separates into light SM-like Higgs doublet and heavy complete $SU(2)_L$ multiplet(s). Keys are (1) degree of mixing and/or vev carried by heavy multiplet; (2) heavy multiplet coupling to fermions (doublets only).