
Carleton University Physics Department

PHYS 4708 (Winter 2015, H. Logan)

Midterm exam

This exam is closed-book and -notes. The three questions will be weighted equally.

1. Consider a system of two spin-1 particles with total angular momentum ~J = ~S1 + ~S2. In
certain materials, various effects conspire to create an effective interaction V = −λ~S1 · ~S2

between neighbouring spins, where λ is a positive number.

(a) Compute the energy shifts caused by V . Use the appropriate basis in accordance with
degenerate perturbation theory.

(b) Consider the set of states with j = 2 and mj = −j, . . . , j. Which of these states are
eigenstates of S1zS2z, and what are the corresponding eigenvalues? For the state(s) that
are not eigenstates of S1zS2z, compute the expectation value of S1zS2z. (Use the table of
Clebsch-Gordan coefficients provided.)

(c) Use the results of parts (a) and (b) to determine the expectation value of (S1xS2x+S1yS2y)
in each of the states with j = 2.

2. Consider a one-dimensional harmonic oscillator with unperturbed Hamiltonian

H0 =
p2

2m
+

1

2
mω2x2, (1)

with eigenstates |n〉 whose energies are E(0)
n = h̄ω(n + 1/2). It is subject to a perturbing

Hamiltonian
H1 = λx2. (2)

(a) Compute the first-order energy shift E(1)
n of level n of this harmonic oscillator. You can

use the expression for x in terms of raising and lowering operators,

x =

√
h̄

2mω
(a+ a†), (3)

where a|n〉 =
√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n+ 1〉.

(b) Compute the first-order correction to the energy eigenstates (i.e., find the new eigenstates
|ψn〉 in terms of the original eigenstates |φn〉 ≡ |n〉).

(c) Compute the second-order energy shift E(2)
n of level n.

(d) This problem can be solved exactly by writing

H = H0 +H1 =
p2

2m
+

1

2
mω′2x2. (4)

Find ω′ in terms of ω and λ and write down the exact perturbed energies E ′n. Do a series
expansion of ω′ out to second order in λ and check that these terms agree with your
results for E(1)

n and E(2)
n found above.
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3. Consider a system of two spin-1 particles. The total angular momentum is ~J = ~S1 + ~S2.

(a) Make a table showing the combinations of ms1 and ms2 that can contribute to each mj

value. What are the allowed values of j?

(b) Write down the state |j = 2,mj = 2〉 in terms of the |ms1,ms2〉 basis states. Show
that this state is an eigenstate of the exchange operator P12, which swaps particle 1 for
particle 2, and find its eigenvalue. Then use the fact that [J±, P12] = 0 (first convince
yourself that this is true!) to write down the states |j = 2,mj = 1〉 and |j = 2,mj = −1〉
in terms of the |ms1,ms2〉 basis states. What can you say about the state |j = 2,mj = 0〉
using just the exchange operator?

(c) Use orthogonality to write down the state |j = 1,mj = 1〉 in terms of the |ms1,ms2〉 basis
states. What is its P12 eigenvalue? Use this result to write down the state |j = 1,mj = 0〉
in terms of the |ms1,ms2〉 basis states.

(d) Based on your result for part (c), what can you say about the P12 eigenvalue of the state
|j = 0,mj = 0〉?



Formula sheet
Schrödinger equation:

ih̄
∂

∂t
Ψ(~r, t) = HΨ(~r, t) (5)

Energy eigenstates: H = ~p2/2m+ V (~r)

Hψ(~r) = Eψ(~r), Ψ(~r, t) = ψ(~r) e−iEt/h̄ (6)

Differential operators corresponding to momentum and energy:

~p→ −ih̄~∇ E → ih̄
∂

∂t
(7)

Harmonic oscillator in 1 dimension:

H =
p2

2m
+

1

2
mω2x2, H|n〉 = En|n〉, En = h̄ω(n+ 1/2) (8)

Raising and lowering operators:

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉, (9)

x =

√
h̄

2mω
(a+ a†), px = −i

√
mωh̄

2
(a− a†) (10)

Harmonic oscillator in 3 dimensions (isotropic), H = ~p2/2m+mω2~r2/2 = Hx +Hy +Hz:
spatial wavefunctions are just the products of the solutions of the 1-dim harmonic oscillator.

H|n1n2n3〉 = En1n2n3|n1n2n3〉, En1n2n3 = h̄ω(n1 + n2 + n3 + 3/2); (11)

the wavefunctions can also be written in terms of the spherical harmonics,

〈~r|nr`m〉 = Rnr`(r)Y`m(θ, φ), Enr`m = h̄ω(2nr + `+ 3/2). (12)

Particle in a box (infinite square well), 1 dimensional:

ψn(x) =

√
2

L
sin

nπx

L
, 0 ≤ x ≤ L, En =

h̄2π2

2mL2
n2 (13)

Particle in a box, 3 dimensional, L× L× L, one corner at the origin:

ψ(x, y, z) =
(

2

L

)3/2

sin
n1πx

L
sin

n2πy

L
sin

n3πz

L
, E =

h̄2π2

2mL2
(n2

1 + n2
2 + n2

3) (14)

Angular momentum:

L2|`,m〉 = h̄2`(`+ 1)|`,m〉, Lz|`,m〉 = h̄m|`,m〉, mmax = ` (15)

L± = Lx ± iLy, [L2, L±] = 0, L±|`,m〉 = C±(`,m)|`,m± 1〉 (16)

C+(`,m) = h̄
√

(`−m)(`+m+ 1), C−(`,m) = h̄
√

(`+m)(`−m+ 1) (17)

~L = ~r × ~p so, e.g., Lz = xpy − ypx. (18)

Addition of angular momentum: when ~J = ~L+ ~S,

j = `+ s, . . . , |`− s|, Jz = Lz + Sz, J± = L± + S± (19)



Spherical harmonics, up to ` = 2:

Y00 =
1√
4π

Y`m(−r̂) = (−1)`Y`m(r̂)

Y11 = −
√

3

8π
sin θeiφ Y10 =

√
3

4π
cos θ Y1,−1 =

√
3

8π
sin θe−iφ

Y22 =

√
15

32π
sin2 θe2iφ Y21 = −

√
15

8π
sin θ cos θeiφ Y20 =

√
5

16π
(3 cos2 θ − 1)

Y2,−1 =

√
15

8π
sin θ cos θe−iφ Y2,−2 =

√
15

32π
sin2 θe−2iφ (20)

Pauli principle: under the exchange of any two identical particles, multi-particle wavefunctions
are symmetric for bosons (integer spin), antisymmetric for fermions (half-odd-integer spin).
Time-independent perturbation theory:

H = H0 + λH1, H0|φn〉 = E(0)
n |φn〉, H|ψn〉 = En|ψn〉 (21)

En = E(0)
n + E(1)

n + E(2)
n + · · · (22)

E(1)
n = 〈φn|λH1|φn〉 E(2)

n =
∑

k 6=n

|〈φn|λH1|φk〉|2
E

(0)
n − E(0)

k

(23)

|ψn〉 = |φn〉+
∑

k 6=n

〈φk|λH1|φn〉
E

(0)
n − E(0)

k

|φk〉+O(λ2) (24)

Degenerate perturbation theory: first find the combinations of states that diagonalize the
matrix 〈φi|λH1|φj〉 made up of states degenerate at zeroth order. The eigenvalues of this matrix
are E(1)

n .
Time-dependent perturbation theory:

H0|φn〉 = E(0)
n |φn〉, ih̄

d

dt
|ψ(t)〉 = (H0 + λV (t))|ψ(t)〉 (25)

|ψ(t)〉 =
∑

n

cn(t)e−iE
(0)
n t/h̄|φn〉 (26)

For ck(0) = 1 and all other cn(0) = 0, to first order in λ the coefficients are

cm(t) =
1

ih̄

∫ t

0
dt′eiωmkt

′〈φm|λV (t′)|φk〉 (27)

where ωmk = (E(0)
m − E(0)

k )/h̄. The transition probability is Pk→m(t) = |cm(t)|2.
Variational principle: for any wavefunction |Ψ〉, 〈Ψ|H|Ψ〉 ≥ E0 = ground state energy of H.
Some math:
Taylor series about x = 0:

f(x) =
∞∑

n=0

1

n!

dnf

dxn

∣∣∣∣∣
x=0

xn (28)

Eigenvalues of a matrix M (I is the unit matrix; solve for λ):

det(M − λ · I) = 0 (29)



40. Clebsch-Gordan coefficients 1

40. CLEBSCH-GORDANCOEFFICIENTS, SPHERICALHARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√
8/15.

Y 0
1 =

√
3

4π
cos θ

Y 1
1 = −

√
3

8π
sin θ eiφ

Y 0
2 =

√
5

4π

(3
2
cos2 θ − 1

2

)

Y 1
2 = −

√
15

8π
sin θ cos θ eiφ

Y 2
2 =

1

4

√
15

2π
sin2 θ e2iφ

Y −m
ℓ = (−1)mY m∗

ℓ 〈j1j2m1m2|j1j2JM〉
= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d ℓ

m,0 =

√
4π

2ℓ+ 1
Y m
ℓ e−imφ

d
j
m′,m = (−1)m−m′

d
j
m,m′ = d

j
−m,−m′ d 1
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2

d 1
1,0 = − sin θ√
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Figure 40.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).


