Formula sheet for midterm exam

This page (both sides), and photocopies of the front and back covers of Griffiths, will be provided with the exam.

Electric field due to a source charge q at the origin:

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} \tag{1}
\end{equation*}
$$

Force on test charge Q at $\overrightarrow{\mathbf{r}}$ due to source charge q at the origin:

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}=Q \overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{r^{2}} \hat{\mathbf{r}} \tag{2}
\end{equation*}
$$

Electric potential:

$$
\begin{equation*}
V(\vec{r})=-\int_{\mathcal{O}}^{\overrightarrow{\mathbf{r}}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}, \quad \overrightarrow{\mathbf{E}}=-\vec{\nabla} V \tag{3}
\end{equation*}
$$

Choosing \mathcal{O} at infinity, potential of a source charge q at the origin:

$$
\begin{equation*}
V(\overrightarrow{\mathbf{r}})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \tag{4}
\end{equation*}
$$

Gauss's law:

$$
\begin{equation*}
\oint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{a}}=\frac{Q_{\mathrm{encl}}}{\epsilon_{0}}, \quad \vec{\nabla} \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{0}} \tag{5}
\end{equation*}
$$

Poisson's equation (reduces to Laplace's equation for $\rho=0$):

$$
\begin{equation*}
\nabla^{2} V=-\frac{\rho}{\epsilon_{0}} \tag{6}
\end{equation*}
$$

Capacitance, definition of:

$$
\begin{equation*}
C=\frac{Q}{\Delta V}, \quad C=\frac{A \epsilon_{0}}{d} \text { for parallel plate } \tag{7}
\end{equation*}
$$

Electrostatic energy for point charges and continuous charge distributions:

$$
\begin{gather*}
W=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{q_{i} q_{j}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}, \quad W=\frac{1}{2} \int \rho V d \tau=\frac{\epsilon_{0}}{2} \int_{\text {all space }} E^{2} d \tau \tag{8}\\
W=\frac{1}{2} C(\Delta V)^{2} \text { stored in a capacitor } \tag{9}
\end{gather*}
$$

Discontinuities across a surface charge:

$$
\begin{gather*}
\overrightarrow{\mathbf{E}}_{\text {above }}-\overrightarrow{\mathbf{E}}_{\text {below }}=\frac{\sigma}{\epsilon_{0}} \hat{\mathbf{n}}, \tag{10}\\
V_{\text {above }}=V_{\text {below }}, \quad \frac{\partial V_{\text {above }}}{\partial n}-\frac{\partial V_{\text {below }}}{\partial n}=-\frac{\sigma}{\epsilon_{0}} \tag{11}
\end{gather*}
$$

Electrostatic pressure (on surface of conductor):

$$
\begin{equation*}
\vec{f}=\frac{\sigma^{2}}{2 \epsilon_{0}} \hat{n}=\frac{\epsilon_{0}}{2} E^{2} \hat{n} \tag{12}
\end{equation*}
$$

Method of Images for a grounded conducting sphere with radius R and a point charge q a distance a from the centre of the sphere:

$$
\begin{equation*}
q^{\prime}=-\frac{R}{a} q, \quad b=\frac{R^{2}}{a} \tag{13}
\end{equation*}
$$

where q^{\prime} is a distance b from the centre of the sphere. For a conducting sphere at potential V_{0}, add a second image charge $q^{\prime \prime}$ at the centre of the sphere such that

$$
\begin{equation*}
V_{0}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{\prime \prime}}{R} \tag{14}
\end{equation*}
$$

Solutions of Laplace's equation:

$$
\begin{gather*}
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta) \tag{15}\\
V(s, \phi)=A_{0} \ln s+B_{0}+\sum_{m=1}^{\infty}\left(A_{m} \cos m \phi+B_{m} \sin m \phi\right)\left(s^{m}+C_{m} s^{-m}\right) \tag{16}
\end{gather*}
$$

Legendre polynomials:

$$
\begin{array}{ll}
P_{0}(x)=1 & P_{3}(x)=\left(5 x^{3}-3 x\right) / 2 \\
P_{1}(x)=x & P_{4}(x)=\left(35 x^{4}-30 x^{2}+3\right) / 8 \\
P_{2}(x)=\left(3 x^{2}-1\right) / 2 & P_{5}(x)=\left(63 x^{5}-70 x^{3}+15 x\right) / 8
\end{array}
$$

