Carleton University Physics Department PHYS 3308 - Electromagnetism (Fall 2014) Homework assignment \#6

Handed out Thurs Oct 16; due Thurs Oct 23, 2014, at the start of class.
H. Logan (This will be the last assignment before the midterm exam.)
Problems are worth 5 points each unless noted otherwise.

1. Find the potential outside a charged metal sphere (with charge Q and radius R) placed in an otherwise uniform electric field $\overrightarrow{\mathbf{E}}_{0}$. Explain clearly where you are setting the zero of potential. (Note: you may use any of the results found in class or derived in the textbook.)
2. Solve Laplace's equation by separation of variables in cylindrical coordinates, assuming there is no dependence on z (i.e., $V=V(s, \phi)$). Make sure you find all solutions to the radial equation; in particular, your result must accommodate the case of an infinite line charge, for which we already know the answer.
3. (10 points) A line charge with linear charge density λ is threaded down the centre of an infinitely long, uncharged metal pipe with inner radius a and outer radius b.
(a) Find the electric field everywhere and the surface charge densities on the inner and outer surfaces of the pipe. (Hint: there's nothing fancy about this part of the problem; you can use Gauss's Law if you want.)
(b) Describe in words how and whether each of your results in part (a) would change if the pipe-plus-line-charge were placed in an otherwise uniform external electric field pointing perpendicular to the pipe. Would there be a net force on the pipe?
(c) Use the results of problem 2 to find the electric potential everywhere outside the pipe for the setup in part (b). Clearly specify how you define the zero of potential.
4. A solid dielectric sphere of radius R carries polarization $\vec{P}(\vec{r})=k \vec{r}$, where k is a constant and \vec{r} is the vector from the centre of the sphere.
(a) Calculate the bound charges σ_{b} and ρ_{b}.
(b) Find the electric field (due to the polarization) inside and outside the sphere. Hint: use the bound charges.
