Carleton University Physics Department PHYS 3308 - Electromagnetism (Fall 2014) Homework assignment \#2

Handed out Thu Sept 11; due Tue Sept 23, 2014, at the start of class.
H. Logan Problems are worth 5 points each unless noted otherwise.

1. Starting from Maxwell's equations (given in the back cover of the textbook) and using the appropriate vector calculus theorems, derive the integral forms of:
(a) Gauss's law
(b) Ampère's law
(c) Faraday's law.

For full marks, define all quantities and explain your reasoning.
2. Vector derivatives in spherical coordinates. Find the derivatives of the unit vectors $\hat{r}, \hat{\theta}$, and $\hat{\phi}$ with respect to r, θ, and ϕ. (Hint: one way to do this is to express the unit vectors in terms of \hat{x}, \hat{y}, and \hat{z}, which do not vary with position.) Using these and the expression for the gradient operator in spherical coordinates,

$$
\begin{equation*}
\vec{\nabla}=\hat{r} \frac{\partial}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}, \tag{1}
\end{equation*}
$$

derive the formulas for $\vec{\nabla} \cdot \vec{A}$ and $\vec{\nabla} \times \vec{A}$, where $\vec{A}=A_{r} \hat{r}+A_{\theta} \hat{\theta}+A_{\phi} \hat{\phi}$.
3. (10 points) Using Gauss's Law, find the electric field everywhere (i.e., both outside and inside the charged objects) for each of the three following charge configurations. (In each case, define a coordinate system and describe your choice of Gaussian surface using a diagram. When evaluating the surface integral, make sure you include all parts of your Gaussian surface!)
(a) A uniformly-charged solid sphere with radius a and total charge Q.
(b) An infinitely-long solid rod with radius b and uniform volume charge density ρ.
(c) An infinite slab of charge with thickness c and charge per unit area σ (the charge is distributed uniformly through the thickness of the slab).
4. An infinitely long solid rod of charge with uniform charge density ρ and radius b is oriented along the z axis. A spherical hole of radius a (with $a<b$) is hollowed out around the origin. Find the electric field everywhere. (Hint: superposition!)

