
The Symmetric Group

We will spend some time on the symmetric (or permuta-

tion) group and its representations.

• close link to important continuous groups

• relevant to systems of identical particles

• classification of tensors

Investigate useful results for the representations and de-

velop a diagrammatic scheme called Young tableaux. This

scheme can be applied to the unitary groups, which are

often of physical significance.

The group Sn is the group of permutations of n objects.

The order of Sn is n!. A useful concept is that of a cycle,

a part of an arbitrary permutation which is independent of

the rest. For instance the permutation
(

1 2 3 4 5 6

2 5 4 3 1 6

)

can be written as the set of cycles (125)(34)(6) or just

(125)(34). Here 1 is replaced by 2, 2 by 5, and 5 by 1,

etc.
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This example has 3 cycles of lengths 3, 2, and 1, which

add up to n = 6. Thus a permutation of this type can

be denoted as a partition [l1l2l3] = [321]. In general a

permutation can be denoted [l1 . . . ln] with li the cycle

lengths in decreasing order (li+1 ≤ li) and i

∑

li = n.

The cycle structure is useful because all permutations

with the same cycle structure belong to the same class.

Thus, the number of classes of Sn and, hence, the num-

ber of irreducible representations is simply the number of

different cycle structures possible (the number of ways n

can be written as a sum of positive integers). See this as

follows.

If two permutations P and P ′ are in the same class then

there must exist a permutation Q that transforms P into

P ′ as P ′ = QPQ−1. Say

P =
(

1 2 . . . n

p1 p2 . . . pn

)
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and

Q =
(

1 2 . . . n

q1 q2 . . . qn

)

≡
(

p1 p2 . . . pn

r1 r2 . . . rn

)

.

Then QPQ−1 =
(

p1 p2 . . . pn

r1 r2 . . . rn

)(

1 2 . . . n

p1 p2 . . . pn

)(

q1 q2 . . . qn

1 2 . . . n

)

=
(

q1 q2 . . . qn

r1 r2 . . . rn

)

= P ′.

P ′ is just P with the top and bottom rows each permuted

by Q. So if (125) is a closed cycle of P , then (q1q2q5)

is a closed cycle of P ′ and the cycle structure remains

intact.

Thus, inequivalent irreps of Sn are determined by the

distinct partitions of n into non-negative integers.

We may characterize these partitions by the so-called

Young diagrams such that the pattern for the partition

n = l1+l2+. . .+ln has horizontal rows of l1, l2, . . . , ln

boxes, each row left justified. Some examples:
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S2: 2 = 2 + 0 2 = 1 + 1

S3: [3] [21] [111]

S4: [4] [31] [22]

[211] [1111]

Obviously no diagram will have more than n rows or

columns. There are some other rules we will state.

Reading from top to bottom, the number of boxes in a row

must not exceed the number of boxes in any previous

row: li+1 ≤ li.

OK NOT OK
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Reading from left to right, a column must not have its

number of boxes larger than that of the column to its left.

OK NOT OK

These are just rules of notation.

Back to Sn: It is useful to determine the one dimensional

representations of the group. We will see that for any n,

there are just two one-dimensional representations.

Any permutation (or cycle) can be written as a product

of transpositions, permutations that interchange two ob-

jects. Pij = (ij) is a cycle of length 2. The breakdown

of a cycle into transpositions is not unique. The number

of transpositions is not even unique but will always be ei-

ther even or odd for a given cycle. A cycle of odd length

can be assigned, by definition, an even parity while one

of even length will have an odd parity. The parity of a

permutation is the product of parities of its cycles.
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All transpositions must be in the same class since they

all have the same cycle structure, the partition being

[211 . . . 1]. Thus all transpositions have the same char-

acter.

For a one dimensional representation, the character is

the representation. All transpositions will be represented

by the same number. Since the product of two identical

transpositions is the identity P 2
ij = E, the number rep-

resenting transpositions must be ±1. So two possible

1-d repns exist: one for which all transpositions are rep-

resented by +1 and the other with transpositions repre-

sented by -1. In the former case, since any permutation

is a product of transpositions, every permutation will be

assigned +1, so this is the symmetric or identity repre-

sentation. A function transforming according to this rep

is unchanged by any permutation, so is totally symmet-

ric. For the latter case, a permutation will be assigned

+1 or -1 depending on whether it has even or odd parity.

This is the anti-symmetric or alternating representation.
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The parity of a permutation can be found using the fol-

lowing function

φA =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ2(x1) . . . φn(x1)

φ1(x2)
...

φ1(xn) φ2(xn) . . . φn(xn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A permutation of the variables xi will interchange rows

in this determinant, yielding a factor of ±1 for even or

odd interchanges - the parity. PφA = ǫPφA. This

function is a natural basis for the one-dimensional anti-

symmetric representation because it transforms accord-

ing to the parity - that is, it transforms according to the

anti-symmetric representation. The function is called to-

tally anti-symmetric since it has the property of changing

sign under the transposition of any two elements:

PijφA = −φA
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Now we can deduce the character table for Sn.

We will discuss first the construction of a vector space in-

variant under permutations. Consider a partition [n1n2 . . .]

of Sn. Consider a function

φ([n1n2 . . .]) =

φ1(1)φ1(2) . . . φ1(n1)φ2(n1 + 1) . . .

φ2(n2 + n1)φ3(n1 + n2 + 1) . . .

Basically we have n particles which are put into single

particle states φi according to the partition. Now oper-

ating with the n! permutations of Sn on φ([n1n2 . . .])

will generate n!
n1!n2!...

independent functions. This set

provides a vector space which is invariant under Sn, for

each partition. Thus it provides a representation of Sn

(not generally reducible).

We can now calculate the character for any permutation

in the representation generated by the partition [n1n2 . . .].
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The character for any group element Q in the represen-

tation [n1n2 . . .] is just the sum of its diagonal matrix

elements in the linear vector space.

∑

P

〈Pφ([n1n2 . . .])|Q|Pφ([n1n2 . . .])〉

ButQP is just another permutation soQP |φ([n1n2 . . .])〉

is another basis vector in the linear vector space. Thus

the only contribution to the character will be for the states

such that Q(Pφ) = (Pφ) which are unchanged by Q.

The character will be equal to the number of states un-

changed by Q.

Notice the identity E is in the class (11), (111), (1111),

etc for S2, S3, S4, etc respectively. For Q = E, all

states are unchanged for this perm so the character is

ψ(E) = n!
(n1!n2!...)

. This is just the dimension of the

vector space generated by the partition [n1n2 . . .]

Note the use of ψ here for character; the notation χ will

be reserved for the irreducible representations.
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We can consider a particular transposition to find the

character of the class of transpositions. For the trans-

position Q = P12, its character will be the number of

basis states for which particles 1 and 2 are in the same

single particle state. This is just the number of ways of

rearranging the other n− 2 particles:

(n− 2)!

(n1 − 2)!n2!n3! . . .
+

(n− 2)!

n1!(n2 − 2)!n3! . . .
+ . . .

The first term corresponds to particles 1 and 2 in state

φ1 while the second has particles 1 and 2 in state φ2,

etc. For a permutation that is a single cycle of length l,

this generalizes to

(n− l)!

(n1 − l)!n2!n3! . . .
+

(n− l)!

n1!(n2 − l)!n3! . . .
+ . . .

If the permutation is a product of cycles the situation is

more unwieldy. However, it is straightforward to deduce

the general formula and use it in simple examples.
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Of course the character for a permutationQ will vanish if

the elements ni of the partition [n1n2 . . .] are too small

to accomodate the cycles (l1l2 . . .) of the class contain-

ing Q. (See character tables of S2,3,4.)

Notice also that the simple partition [n] has character
n!
n!

= 1 for every class. This is to be expected as the

partition [n] has all then particles in the same single par-

ticle state so the linear vector space is one dimensional.

The function φ(1) . . . φ(n) is unchanged by any permu-

tation. Thus this corresponds to the identity (symmetric)

representation and is irreducible. So ψ[n] = χ[n] = the

character of the identity representation.

We can proceed from this point to express the next level

partition [(n− 1)1] in terms of [n] and a remaining irre-

ducible part by the standard methods introduced earlier

in our study of representations and characters. That is,

we can write the character of a representation as a sum
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of characters of irreps. For example, in S4,

ψ[31] =
∑

α

mαχ
α
p .

Here the subscript p is a class label and the superscript

α is a partition (irrep) label. For instance, α = 1 corre-

sponds to [4]. So,

ψ[31] = m1χ
[4] +

∑

α 6=1

mαχ
α
p

By the orthogonality properties of characters of irreps,

we can solve for the coefficient m1 as

m1 =
1

g

∑

p

cpχ
[4]∗
p ψ[31]

For S4, g = 24. After determining the cp (i.e. the size

of the classes), we simply plug in the known values of

χ[4]
p = 1,∀p and ψ[31] from our tables to find the value

m1 = 1. Thus

ψ[31] = χ[4] +
∑

α 6=1

mαχ
α
p
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Now we can show that what is left (after subtracting χ[4])

is actually irreducible and so we’ll call it χ[31].

After subtracting χ[4] = 1 from the character ψ[31]
p for

each class p we have:

ψ[31]
p /remainder 3 1 − 1 0 − 1

But, for an irrep, we have

∑

p

cp |χp|
2 = g

In fact, with the above results

∑

p

cp
∣

∣

∣ψ[31]
p /remainder

∣

∣

∣

2
= 24 = g

Thus, this remainder is itself irreducible.

You simply continue in this manner to decompose the

next layer ψ[22] into irreps by solving for m1 and m2.

The remainder will again be irreducible. We can continue

this way through all the partitions.
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At this point, we can now write down all possible irreps

of Sn as all distinct partitions [n1n2 . . .] and can also

construct the character table for the irreps.

We will next consider a chain of subgroups of Sn. We

will see how Young diagrams can be a useful tool.

If we consider the permutation of objects labelled 1 through

n− 1 among n objects, then this will be the group Sn−1

which must be a subgroup of Sn. There will be a chain

of subgroups:

Sn → Sn−1 → Sn−2 → . . .→ S2.

An irrep of Sn will also provide a representation ofSn−1,

though not always an irrep. This follows from our previ-

ous study of subgroups.
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Thus we should be able to reduce an irrep of Sn into a

sum of irreps of Sn−1 as

T (αn) =
∑

αn−1

m(αn−1)T
(αn−1)

In the above, αn is a partition of n, T (αn) is an irrep of

Sn, αn−1 is a partition of n− 1, and T (αn−1) is an irrep

of Sn−1.

Summing over diagonal elements, we obtain the equiv-

alent relation for characters and we may then use the

character table to determine the coefficients m(αn−1):

m(αn−1) =
1

g

∑

p

cpχ
(αn−1)∗
p χαn

p

The sum is over classes.

Only classes p of Sn with at least one cycle of length

1 can contribute. This is because at least one of the n

objects must be unchanged by the permutation to form

the subgroup Sn−1.
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Thus, for example, in the reduction of the partition [4] of

S4 to irreps of S3, we have:

χ[4] = (1)χ[3] + (0)χ[21] + (0)χ[111]

Generally the coefficientsm(αn−1) are either zero or one.

There is a simple way of determining which are nonzero

with Young diagrams.

The irreps of Sn−1 contained in the reduction of an irrep

of Sn will be those corresponding to the Young diagrams

obtained from the Young diagrams of Sn by removing

one box.

So, indeed, as S4 → S3, → .

A more complicated example yields, as S9 → S8:

→ + +

(At this point, we have not determined the above irreps.)
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This reduction process can help in choosing basis vec-

tors for an Sn invariant subspace. They can be chosen

such that they transform according to an irrep of the sub-

group Sn−1. Similarly, irreps of Sn−1 will decompose

into irreps of Sn−2, according to which the basis vectors

can be chosen to transform. This chain continues down

to S2.

Then the vectors spanning the irreps of Sn can be char-

acterized by the chain of irreps of Sn−1, Sn−2, . . . ,S2

which they also span:

αn αn−1 αn−2 . . . α2

where these are irreps of Sn . . .S2 respectively.

The chain of partitions can be represented by a single

Young tableau with an appropriate labelling as follows.

Enter the numbers 1 through n in the Young tableau for

the partition αn such that n is put into the square which,

when removed, yields the Sn−1 tableau αn−1, and so

on.
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For instance theS9 example above could be broken down

as:
S9

1 2 4 5
3 6 9
7 8

→

S8

1 2 4 5
3 6
7 8

→

S7

1 2 4 5
3 6
7

→
S6

1 2 4 5
3 6 →

→
S5

1 2 4 5
3 →

S4

1 2 4
3 →

S3

1 2
3 →

S2

1 2

There are many ways to proceed through this chain. The

number of ways in which the integers can be placed in

the boxes in this ’natural order’ (increasing left to right

and top to bottom while allowing only legal Young Tableaux)

is the dimension of the irrep of Sn. (Recall the dimen-

sion is given in the character table as the character of

the identity element.)

For the simple case of S3, the following labels are al-

lowed:

[3] is the 1-d symmetric irrep: 1 2 3

[21] is the 2-d irrep: 1 2
3

1 3
2
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[111] is the 1-d anti-symmetric irrep:
1
2
3

We will next develop a couple ways of multiplying repre-

sentations. First consider the direct product of two repre-

sentations. We have already studied this in the general

context of representation theory.

Recall that a direct product of two irreps of Sn can be

reduced to a sum over irreps of Sn

Tα × T β =
∑

γ

mγT
γ

with coefficients

mγ =
1

g

∑

p

cpχ
γ∗
p χ

α
pχ

β
p

given from the character tables.

In order to introduce the concept of conjugate or adjoint

representation, consider the direct product of an irrep

Tα with the one dimensional totally antisymmetric irrep
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[111 . . . 1]. The character, for an element in a given

class, of Tα × T β is just the product of the charac-

ters, for that class, of Tα and T β . But the characters for

[111 . . . 1] are just the parities of each class, ǫp = ±1.

So the characters of our direct product representation

will be χα×[11...1]
p = ǫpχ

α
p for elements in class p. So,

summing over classes,

∑

p

cp
∣

∣

∣χα×[11...1]
p

∣

∣

∣

2
=

∑

p

cp|ǫp|
2|χα

p |
2 = g

since |ǫp|
2 = 1 and Tα is an irrep. Thus, since it sat-

urates this sum, Tα × T [11...1] is also irreducible. De-

note this product representation as T α̃. We see from the

character tables that α̃ is related to α by the interchange

of rows and columns in their Young diagrams. That is, if

in S4, α = [31] = , then α̃ = [211] = .

α̃ is called the conjugate or adjoint representation to α.

Some irreps are self-adjoint; for these, the characters of
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any class with odd parity vanish. This is because Tα

and Tα × T [11...1] are equivalent in this case and so

must have the same characters. The only solution to

(−1)χα
p = χα

p is χα
p = 0.

We can also check for the occurrence of the symmetric

[n] and the anti-symmetric [111 . . . 1] representations

in direct product expansions. We have

m[n] =
1

g

∑

p

cpχ
[n]∗
p χα

pχ
β
p = δαβ

since χ[n]
p = 1. This means the symmetric representa-

tion can only occur if one takes the direct product of two

equivalent irreps (i.e. the same characters). Also

m[11...1] =
1

g

∑

p

cpǫpχ
α
pχ

β
p =

1

g

∑

p

cpχ
α̃
pχ

β
p = δα̃β

since χ[11...1]
p = ǫp. The anti-symmetric irrep will only be

produced in the direct product of an irrep with its adjoint.

These rules are obviously of importance if one needs to

21



form a state with specific symmetry properties.

Now define another type of product representation - the

outer product. Here we use an irrep Tα of Sn and an

irrep Tα′

ofSn′ to generate a representation T ofSn+n′ ,

which will then be reduced into irreps of Sn+n′ .

T = Tα ⊗ Tα′

One can construct products of functions fi(1, 2, . . . , n)

and gj(n + 1, . . . , n + n′) that transform according to

irreps Tα of Sn and Tα′

of Sn′ , respectively. Here i =

1, 2, . . . , sα and j = 1, 2, . . . , s′α. Those sαsα′ prod-

ucts figj will not form an invariant space under Sn+n′

but, allowing for all permutations between the n particles

in f and the n′ in g will complete the space.

The dimension of the space will be

sαsα′

(n+ n′)!

n!n′!

where
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• sα is the dimension of the space for Tα in Sn

• sα′ is the dimension of the space for Tα′

in Sn′

• (n+n′)!
n!n′!

is the number of ways of choosing n objects

in n+ n′

So T will provide a (generally reducible) representation

of Sn+n′ .

We can see how this reduces to a sum of irreps by first

considering outer products of a representation of Sn with

the irrep of S1 , n′ = 1.

First consider n = n′ = 1. In this case ⊗ will yield

a two-dimensional reducible representation of S2. The

corresponding functions providing a basis would include

f(1)g(2) and the permuted function f(2)g(1). These

can be combined, however, into the (1-d) symmetric and

antisymmetric irreps (f(1)g(2) ± f(2)g(1)) of S2 as:

⊗ = +
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Now building on this, consider ⊗ . is sym-

metric in its particles so only and can be

formed in this product. These are the only allowed ways

a single box can be added to the Young diagram .

Thus the resulting 3-dimensional space will consist of the

totally symmetric basis vector for and the two

mixed-symmetric basis vectors of . In terms of the

functions f(1, 2)g(3) and their permutations, we can

write the symmetric function f(1, 2) = φ(1)φ(2). The

permutations are then φ(1)φ(2)g(3), φ(1)g(2)φ(3),

and g(1)φ(2)φ(3). The completely symmetric combi-

nation (ignoring normalization)

φ(1)φ(2)g(3) + φ(1)g(2)φ(3) + g(1)φ(2)φ(3)

provides the basis for the 1-d irrep 1 2 3 . The remain-

ing combinations constitute the Young tableaux 1 2
3
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and 1 3
2

and can be written in terms of functions

2φ(1)φ(2)g(3) − φ(1)g(2)φ(3) − g(1)φ(2)φ(3)

and

φ(1)g(2)φ(3) − g(1)φ(2)φ(3).

Generally, the outer product of Tα with yields

Tα ⊗ =
∑

β

T β

where the sum is over all tableaux formed by adding a

box to the tableau for Tα. We will now simply state the

rules for the general case.

T = Tα ⊗ Tα′

=
∑

β

m(β, α, α′)T β (∗)

In the above α is a partition of n, α′ is a partition of

n′, and β is a partition of n + n′. m(β, α, α′) is the

multiplicity of partition β in the product. These partitions

are formed as follows.
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1. Place a letter a in each box of the first row of tableau

α′, b in each box of the second row, etc.

α′ =
a a a
b b
c

This shows the symmetry within rows.

2. Add the boxes of α′ to the tableau for α such that the

a’s are added first, the b’s next, etc. and such that

the result is an allowed Young tableau, with no iden-

tical letters appearing in a column. (This is because

identical letters are indicating a symmetric state.) There

cannot be fewer a’s in reading from right to left than

b’s, etc.

All the resulting diagrams will yield the sum above. These

are known as Littlewood-Richardson rules. Note that the

maximum number of rows possible is n+ n′.

The following example gives the outer product of the par-

tition [22] of S4 with the partition [21] of S3 to yield a
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sum of partitions of S7.

⊗ a a
b = a a

b +
a a

b
+

a

a
b

+
a

a b

+
a
b

a
+ a a

b

We can see that this works dimensionally.

2 × 2 × 7!

4!3!
= 140 = 14 + 35 + 35 + 21 + 21 + 14

T [22] ⊗ T [21] =

T [43] + T [421] + T [3211] +

T [322] + T [331] + T [2221]

We have noted that the dimension of the irreps is given

by the number of allowed ways to put numbers into the

Young tableaux. A general formula for the dimensions of

the irreps was developed by Frobenius. Details are given

in Hamermesh.
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However, there is a simple formula that is typically used

in particle physics, known as the hook rule. By the hook

rule, the dimension of an irrep of Sn corresponding to a

given partition is the ratio of the order of the group n! to

the product of the hook lengths. Each box in the Young

diagram is assigned a hook length h = (r + b + 1)

where r is the number of boxes to the right of that box

in the same row and b is the number of boxes below that

box in the same column.

s[n1n2...] =
n!

∏

i hi

The hook length is the number of boxes one passes

through coming in from the right along a row to the box

in question, hooking down 90◦, and going down along a

row.

For the first irrep in the reduction above, the hook lengths

are given in each box as 5 4 3 1
3 2 1

such that the dimen-

sion is 7!
5·4·3·1·3·2·1

= 14.
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Now look at the reduction of irreps of Sn+n′ under the

subgroup Sn×Sn′ . Since Sn×Sn′ , with Sn referring to

labels 1 → n andSn′ referring to labelsn+1 → n+n′,

is a subgroup of Sn+n′ , we can reduce an irrep T β of

Sn+n′ as

T β =
∑

α,α′

m(β, α, α′)Tα×α′

(∗∗)

Recall the relation χα×β(GaHb) = χα(Ga)χ
β(Hb)

for characters of a product group, where Ga is an ele-

ment of Sn and Hb of Sn′ .

Summing the representation relation (∗∗) above over di-

agonal elements, it becomes a relation for characters

χβ =
∑

α,α′

m(β, α, α′)χα×α′

Using the orthogonality of irreps of Sn × Sn′ yields

m(β, α, α′) =
1

n!n′!

∑

G,H

χβ(GH)χα×α′

(GH)
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Notice the coefficients of equation (∗) on page 25 for

the reduction of the outer product into a sum of irreps of

Sn+n′ are given by

m(β, α, α′) =
1

(n+ n′)!

∑

B

χβ(B)χ(B)

where B is in Sn+n′ and χ(B) is the character of

Tα ⊗Tα′

= T , the outer product representation. Since

T was generated by functions

fi(1, 2, . . . , n)gj(n+ 1, . . . , n+ n′),

any class in Sn+n′ whose elements are not in the sub-

group Sn ×Sn′ must have χ = 0 in T . For the remain-

ing elements of Sn+n′ , the character is given by

cBχ(B) =
(n+ n′)!

n!n′!
cGHχ

α×α′

(GH)

GH is an element of Sn × Sn′ belonging to the same

class as B. cB is the number of elements in the cor-

responding class of Sn+n′ and cGH is the number of
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elements in the corresponding class of Sn × Sn′ . Thus

the coefficients in equation (∗) on page 25 and (∗∗) on

page 29 are the same. So one can construct the charac-

ter tables of product groups from existing tables and then

reduce the group Sn+n′ into a sum of irreps of Sn×Sn′ .

The reduction of irreps of S4 into irreps of the subgroup

S2 ×S2 follows as an example. First form the character

table of S2 × S2. (see the handout) Use that along with

the character table of S4 to find:

·[4] = [2] × [2]

·[31] = [2] × [2] + [2] × [11] + [11] × [2]

·[22] = [2] × [2] + [11] × [11]

·[211] = [2] × [11] + [11] × [2] + [11] × [11]

·[1111] = [11] × [11]
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The class size cp for the symmetric group (Hamermesh)

We know that the size of any class of Sn is the number

of distinct permutations that share the same cycle struc-

ture.

For a class p, there is a systematic way to calculate this

size, cp, by characterizing the cycle structure according

to the number of 1-cycles (p1), the number of 2-cycles

(p2), and so on.

To start, the total of n objects can be permuted n! ways.

However, these are not all distinct. First, the cycles of a

particular length can be put in any order - for instance, for

the 1-cycles, (1)(2) is the same as (2)(1), so there are p1!

ways to arrange these 1-cycles. The same holds for any

of the other cycles - (12)(34) is the same as (34)(12). So

among the n! permutations, p1!p2!....pn! are redundant.

Similarly, within each occurence of a particular cycle, cy-

cling through its entries does not yield a distinct permu-

tation. As examples, (i) the 2-cycle (12) is the same as
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(21), so one must divide by a factor of 2 for each 2-cycle

(that is, by 2p2 and (ii) the 3-cycles (123), (231), and

(312) are all the same so divide by 3p3 , and so on. This

redundancy factor is 2p2 . . . npn .

This exhausts all the redundancies yielding the class size

as

cp =
n!

p1! · 2p2 · p2! · 3p3 · p3! . . . npn · pn!
.
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