6. Exotic Hadrons: Multiquarks, Glueball and Hybrids

\author{

1. Why?
 2. Multiquarks
 3. Glueballs
 4. Hybrids
 5. Summary
}
*For a recent review see Godfrey and Napolitano, Rev Mod Phys 71, 1411(1999)

The New diork eimes

10 Physics Questions to Ponder for a Millenium or Two
 One of those questions:

How can we understand quark and gluon confinement in Quantum Chromodynamics?

Meson Spectroscopy is the ideal laboratory to accomplish this

A fundamental question to this is end is

"How does glue manifest itself in the soft QCD regime?"
Models of hadron structure

- Lattice QCD (C. McNeille)
- Bag Model
- Flux tube model
-Sum rules approach
predict new forms of hadronic matter with the glue degree of freedom manifest explicitly:
-Glueballs
- Hybrids
and in addition: Multiquark States

Lattice calculations not yet enough.

Also need phenomenological models to help to find these states:

- Disentangle their properties
- Build up a physical picture

Much theoretical progress:

- Lattice QCD is a first principles calculation starting from the QCD lagrangian (C. McNeille)
-Gives a good description of the observed spectrum or heavy quarkonium

-Potential description works well

Conventional Mesons:

Mesons are composed of a quark-antiquark pair
Combine u, d, s, c, b quark and antiquark to form various mesons:

Meson quantum numbers characterized by given JPC

Allowed:

$$
\begin{aligned}
& S=S_{1}+S_{2} \\
& J=L+S \\
& P=(-1)^{L+1} \\
& C=(-1)^{L+S}
\end{aligned}
$$

$$
J^{P C}=0^{-+} 1^{--} 1^{+-} 0^{++} 1^{++} 2^{++} . .
$$

Not allowed: exotic combinations:

$$
J^{P C}=0^{--} 0^{+-} 1^{-+} 2^{+-} . .
$$

Multiquark Mesons: $q q \bar{q} \bar{q}$

Multiquarks manifests themselves in many ways and important in many places:

- More complicated than $q \bar{q}$ states
- Meson-meson potentials in scattering
-Leads to final state interactions in weak decays resulting in strong phases
Need to understand strong phases to extract weak phases and hence extract CP violating phases
- Higher Fock space components which shift $q \bar{q}$ masses

Next simplist hadron multiquark hadron:

- Neither forbidden by colour confinement like $q, q q, q q \bar{q}$
- Nor required like $q \bar{q}, q q q$
- Next complication beyond $q 9 q$
-Less complicated than $6 q$

Multiquark Mesons:

-No time to discuss but mention as another ingredient $f_{0}(980), a_{0}(980)$ believed to be multiquark states $f_{1}(1430)$ long standing puzzle ($E /$ puzzle) $\mathrm{f}_{\mathrm{J}}(1710)$ also open to interpretation
-Could also have multiquarks with exotic quantum \#'s

- Best bets are fractional or doubly charged mesons

Additional Complications:

- Colour configurations no longer unique
- 3 relative coordinates

Take $\quad H=\sum_{i=1}^{4}\left(m_{i}+\frac{p_{i}^{2}}{2 m_{i}}\right)+\sum_{i<j}\left[-\frac{1}{2} k r_{i j}^{2} \vec{F}_{i} \cdot \vec{F}_{j}+H_{h y p}^{i j}\right]$

In $\left|\overline{3}_{12} 3_{34}\right\rangle-\left|6_{12} \overline{6}_{34}\right\rangle$ basis

$$
\begin{aligned}
H= & \frac{1}{2 m}\left(p_{\sigma}^{2}+p_{\bar{\sigma}}^{2}+p_{\lambda}^{2}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
& +\frac{1}{2} k\left(\begin{array}{cc}
2 \sigma^{2}+2 \bar{\sigma}^{2}+\frac{1}{3} \lambda^{2} & -2 \sqrt{2} \vec{\sigma} \cdot \overrightarrow{\vec{\sigma}} \\
-2 \sqrt{2} \vec{\sigma} \cdot \overline{\bar{\sigma}}^{2} & \sigma^{2}+\bar{\sigma}^{2}+\frac{10}{3} \lambda^{2}
\end{array}\right)
\end{aligned}
$$

The solution must include free mesons Solve variationally and find:

- No weakly bound states or resonances
- Best viewed as 2 weakly bound mesons analogous to Nucleon-nucleon structure of deuteron with residual interactions
s. Godfrey, Carleton University

It is widely believed that the $f_{0}(980)$ and $a_{0}(980)$ with $J^{P C}=0^{++}$resonances are $K \bar{K}$ molecules

Explains why they are relatively narrow:
-The $K \bar{K}$ are weakly bound

- Far apart
- Not likely to annihilate to $\pi \pi$

Much interesting physics:

- Can calculate potentials between mesons \Longrightarrow - final state interactions

Very important for B-decays looking for asymmetries $\Longrightarrow C P$ violation
$1^{\text {st }}$ Example: $\boldsymbol{\gamma} \boldsymbol{\gamma} \rightarrow \boldsymbol{\pi} \boldsymbol{\pi}$

(a)

(b)

(c)

$$
f_{L M_{L}}^{\lambda_{1} \lambda_{2}}=\int d \Omega Y_{L M_{L}}^{*}(\theta, \phi) \mathcal{M}_{\lambda_{1} \lambda_{2}} .
$$

$$
u_{l}(k, r) \xrightarrow{r \rightarrow \infty} \frac{1}{k r} \sin \left(k r-l \pi / 2+\delta_{l}\right) .
$$

$$
f_{L M_{L}}^{\mathrm{FII}}\left(s\left(k_{f}\right)\right)=\frac{2}{\pi} \sqrt{s\left(k_{f}\right)} e^{i \delta_{L}} \int_{0}^{\infty} d k \int_{0}^{\infty} d r r^{2} k^{2} \frac{f_{L M_{L}}(s(k))}{\sqrt{s(k)}}
$$

$$
\begin{equation*}
\times j_{L}(k r) u_{L}\left(k_{f}, r\right) . \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& \psi^{-\pi^{+}} \pi^{-} *(k)=\left\langle\psi_{k_{f}^{-}}^{-\pi^{+}} \pi^{-} \mid \phi_{k}^{\pi^{+}} \pi^{-}\right\rangle \\
& =\left[\sqrt{\frac{2}{3}}\left\langle\psi_{k_{f}}^{-0}\right|+\sqrt{\frac{1}{3}}\left\langle\psi_{k_{f}}^{-2}\right|\right] \\
& \times\left[\sqrt{\frac{2}{3}}\left|\phi_{k}^{0}\right\rangle+\sqrt{\frac{1}{3}}\left|\phi_{k}^{2}\right\rangle\right] \\
& =(2 \pi)^{3 / 2}\left[\frac{2}{3} \psi_{\vec{k}_{f}}^{-0 *}(\vec{k})+\frac{1}{3} \psi_{\dot{k}_{f}}^{-2 *}(\vec{k})\right] \text {, } \\
& f_{L M_{L} \pi^{+} \pi^{-}}^{\mathrm{FSI}}\left(s\left(k_{f}\right)\right)=\frac{2}{\pi} \sqrt{s\left(k_{f}\right)} \\
& \times \int_{0}^{\infty} d k \int_{0}^{\infty} d r r^{2} k^{2} \frac{f_{L M_{L}}(s(k))}{\sqrt{s(k)}} j_{L}(k r) \\
& \times\left[\frac{2}{3} e^{i \delta_{L}^{0}} u_{L}^{0}\left(k_{f}, r\right)+\frac{1}{3} e^{i \delta_{L}^{2} u_{L}^{2}\left(k_{f}, r\right)}\right] \\
& \left|f_{L M_{L} \pi^{0} \pi^{0}}^{\mathrm{FSS}}\right|^{2}=\frac{2}{9}\left(g_{L M_{L}}^{0}\right)^{2}+\frac{2}{9}\left(g_{L M_{L}}^{2}\right)^{2} \\
& -\frac{4}{9} g_{L M_{L}}^{0} g_{L M_{L}}^{2} \cos \left(\delta_{L}^{0}-\delta_{L}^{2}\right)
\end{aligned}
$$

S. Godfrey, Carleton University

FIG. 2. The $\pi \pi$ potentials vs r for $I=0, L=0$ (solid line), I $=0, L=2$ (dashed line), $I=2, L=0$ (dotted line), and $I=2, L=2$ (dot-dot-dashed line). The potentials are given by Eq. (8) with the

$2^{\text {nd }}$ Example: 6 quarks or nuclear physics from the quark model Even more complicated than $q q \bar{q} \bar{q}$
Numerous spin, colour, flavour configurations
5 relative coordinates
Solved variationally with 3-quark clusters wavefunction and intercluster configuration
Found:

1. Strong clustering into 23 -quark systems with quantum numbers of the neutron and proton
2. Nucleon physics is appropriate for nuclear physics - Strong repulsive core

- Intermediate range binding - ${ }^{3} S_{1}$ less repulsive than ${ }^{1} S_{0}$

FIG. 1. The effective nucleon-nucleon potential from residual quark forces in the ${ }^{3} S_{1}$ and ${ }^{1} S_{0}$ channels.

Glueballs and Hybrids; Back to QCD

$$
\mathcal{L Q C D}=\sum_{f}^{\sum_{f}} \bar{q}\left[i \gamma_{\mu}\left(\partial^{\mu}+i g A^{\mu}\right)-m_{f}\right] q f-\frac{1}{2} \Gamma_{2}\left(F_{\mu \nu} F^{\mu \nu}\right)
$$

Believed that gluons act as both mediators of strong force and constituent of new types of hadrons

Now know it is far more complicated

S. Godfrey, Carleton University

To distinguish glueballs and hybrids from conventional states look for quantum numbers that don't follow from quark model

To enumerate JPC quantum numbers consider gauge invariant interpolating fields (this is model independent)

There are numerous models of hybrids and glueballs:

- The Bag Model
- Constituent Glue Models
-QCD Sum Rules
- The Flux tube model
-Lattice QCD (not a model - a real calculation)

Glueballs:

- Need to unambiguously observe glueballs and measure their properties
- This will test QCD
- But deeper than this it builds up confidence that we really can do nonperturbative field theory calculations

The Bag Model

Quarks obey free Dirac equation:

$$
\begin{aligned}
& (\bar{p}-m) \psi=0 \text { inside } \mathrm{S} \\
& \psi=0 \text { outside } \mathrm{S}
\end{aligned}
$$

+ no colour current through the bag surface
Quarks in $1 S_{1 / 2}, 1 P_{1 / 2}, 1 P_{3 / 2}$ eigenmodes:
Lowest state: $\left(1 S_{1 / 2}\right)^{2} \Longrightarrow J^{P}=0^{-}, 1^{-}$
Excited state $\left(1 S_{1 / 2}\right)\left(1 P_{1 / 2}\right) \Longrightarrow J^{P}=0^{+}, 1^{+}$

Gluons obey the free Helmholtz equation:

$$
\begin{aligned}
& \left(\nabla^{2}+\omega^{2}\right) \vec{A}^{a}=0 \text { inside } \mathrm{S} \\
& \vec{A}^{a}=0 \text { outside } \mathrm{S} \\
& \text { and }\left.\eta_{\mu} F_{\mu \nu}^{a}\right|_{s}=0
\end{aligned}
$$

T solutions are the TE and TM cavity resonator modes:

$$
\begin{aligned}
& \text { ТE } J^{P C}=1^{+-} \\
& \text {ТМ } J^{P C}=1^{--}
\end{aligned}
$$

In addition there are contributions from gluon exchange Uncertainties: Bag pressure $\pm 30 \%$

Quark and Gluon self energies $\pm 30 \%$
Value of α_{s}

Hybrids:

$$
(q \bar{q})_{8} \times g_{8}=(q \bar{q} g)_{1}+\ldots
$$

Lowest hybrid meson multiplet constructed:

$$
\begin{aligned}
& q\left(J^{P}=\frac{1}{2}+\right) \times \bar{q}\left(J^{P}=\frac{1}{2}+\right) \times g\left(1^{+-}\right)=(q \bar{q} g) \\
& \left(0^{-}, 1^{-}\right) \times 1^{+}(T E)=2^{-+}, 1^{-+}, 1^{--}, 0^{-+}
\end{aligned}
$$

-Spurious CofM degree of freedom
-What about decays?

Lattice QCD

SU(3) Glueball Spectrum
C.Morningstar and M.Peardon

Mass predictions by Lattice QCD are fairly robust.

Lowest mass glueballs have conventional quantum numbers:

$$
\begin{aligned}
& M_{0^{++}} \sim 1.6 \mathrm{GeV} \\
& M_{2}^{++} \sim 2.3 \mathrm{GeV} \\
& \mathrm{M}_{0^{+}} \sim 2.5 \mathrm{GeV}
\end{aligned}
$$

Lowest lying glueballs with exotic quantum numbers $0^{+-}, 2^{+-}, 1^{+}$ are much higher in mass
-Difficult to produce exotic glueballs

-Difficult to disentangle glueballs with conventional Q\#'s from dense background of conventional states

Flux Tube Model

Glueballs

$$
\begin{aligned}
& M\left(0^{++}\right)=1.52 \mathrm{GeV} \\
& M\left(1^{++}\right)=2.25 \mathrm{GeV} \\
& M\left(0^{++}\right)=2.75 \mathrm{GeV} \\
& M\left(0^{+-}\right)=2.79 \mathrm{GeV} \\
& M\left(0^{--}\right)=2.79 \mathrm{GeV} \\
& M\left(2^{++}\right)=2.84 \mathrm{GeV} \\
& M\left(2^{+-}\right)=2.84 \mathrm{GeV}
\end{aligned}
$$

Model	0^{++}	$\left(0^{++}\right)^{\prime}$	0^{-+}	2^{++}	$\left(2^{++}\right)^{\prime}$	2^{-+}
lattice (anisotropic)	$1.63(6)(8)$			$2.40(1)(12)$	$3.32(2)(16)$	
lattice (UKQCD)	$1.55(5)$			$2.27(10)$		
lattice (GF11)	$1.74(7)$			$2.36(13)$		
lattice (Teper)	$1.57(9)$	$2.87(34)$	$2.16(27)$	$2.22(12)$		$3.06(26)$
lattice (SESAM)	$1.66(5)$			$2.32(25)$		
QCDSR (SVZ)	~ 1.2		$2-2.5$	~ 1.2		
QCDSR (Narison)	$1.5(2)$		$2.05(20)$	$2.0(1)$		
bag (MIT)	~ 1		~ 1.2	~ 1		~ 1.2
bag (BCM)	~ 1		~ 1.5	~ 1.5		2.84
flux tube	1.52	2.75	2.79	2.84		~ 2.1
const glue (Barnes)	~ 1.5	~ 2.1	~ 1.5	~ 1.8	~ 2.1	
const glue (Cornwall+Soni)						
const glue (NCSU)	1.5		1.76	2.08		2.82

Glueball Properties:

Expect glueball decays to have flavour symmetric couplings to final state hadrons:

$$
\frac{\Gamma\left(G \rightarrow \pi \pi: K \bar{K}: \eta \eta: \eta \eta^{\prime}: \eta^{\prime} \eta^{\prime}\right)}{\text { Phase Space }}=3: 4: 1: 0: 1
$$

But situation complicated by mixing with $q \bar{q}$ and $q \bar{q} q \bar{q}$
Physical states are linear combinations:

$$
\left|f_{0}\right\rangle=\alpha|n \bar{n}\rangle+\beta|s \bar{s}\rangle+\gamma|G\rangle+\delta|q \bar{q} q \bar{q}\rangle
$$

Will shift unquenched glueball mass and distort naïve couplings

Close \& Kirk, PL B483, 345 (2000); Eur. Phys. J. C21, 531 (2001)

Meson properties can be used to extract the mixings and understand the underlying dynamics

$$
\left.\begin{array}{rl}
\mathrm{pp}-> & \mathrm{p}_{\mathrm{s}}[\mathrm{KK}, \pi \pi] \mathrm{p}_{\mathrm{f}} @ 450 \mathrm{GeV} \\
& \mathrm{f}_{0}(1370) \\
\mathrm{f}_{0}(1500) \\
\mathrm{f}_{0}(1710)
\end{array}\right\} \frac{\mathrm{K} \overline{\mathrm{~K}}}{\pi \pi}\left\{\begin{array}{cc}
<1 & (0.5 \pm 0.2) \\
\ll 1 & (0.3 \pm 0.1) \\
\gg 1 & (5.5 \pm 0.8)
\end{array}\right) .
$$

Using decay information Close and Kirk get $^{m\left(K^{+} K^{\prime}\right)}[\mathrm{GeV}]$
Using decay information Close and Kirk get:

$$
\begin{aligned}
\left|f_{0}(1370)\right\rangle & =-0.79|n \bar{n}\rangle-0.13|s \bar{s}\rangle+0.60|G\rangle \\
\left|f_{0}(1500)\right\rangle & =-0.62|n \bar{n}\rangle+0.37|s \bar{s}\rangle-0.69|G\rangle \\
\left|f_{0}(1710)\right\rangle & =+0.14|n \bar{n}\rangle+0.91|s \bar{s}\rangle+0.39|G\rangle
\end{aligned}
$$

The point is not the details of the mixing but that mixing is an important consideration in the phenomenology
C. Amsler PL B541 (2002) 22
$\mathrm{f}>=\cos \alpha|\overline{\mathrm{n}}>-\sin \alpha| \mathrm{s} \overline{\mathrm{s}}>$

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{\gamma^{2}(\eta \eta)}{\gamma^{2}(\pi \pi)} \\
& \mathrm{R}_{2}=\frac{\gamma^{2}(\mathrm{~K} \overline{\mathrm{~K}})}{\gamma^{2}(\pi \pi)}
\end{aligned}
$$

as a function of α
works perfectly for 2^{++}mesons: $\alpha=82^{\circ}$, as from mass formula
$\underline{\text { Assuming qq:- }} \begin{cases}\mathrm{f}_{0}(1500) \text { is } & \boxed{n \bar{n}}> \\ f_{0}(1700) \text { is dominantly } & -10^{\circ}<\alpha<5^{\circ} \\ \hline \mathrm{ss}>\end{cases}$
$\gamma \gamma$ couplings is a very sensitive probe of $q \bar{q}$ content

An important test of glue content is comparing the gluon rich channel $J / \Psi \rightarrow \gamma X$ to $\gamma \gamma$ couplings

$$
S=\frac{\Gamma(J / \psi \rightarrow \gamma X)}{P S(J / \psi \rightarrow \gamma X)} \times \frac{P S(\gamma \gamma \rightarrow X)}{P S(\gamma \gamma \rightarrow X)}
$$

large Stickiness reflects enhanced glue content

Production of Glueballs:

1. J / $\psi \rightarrow \gamma \mathrm{X}$
2. $p \bar{p}$ annihilation
3. $p p \rightarrow p_{f}(G) p_{s}$ central production (Donskov)

- In central production diffractive process via
"gluonic pomeron exchange"
- Expect competition with $q \bar{q}$ production
- But kinematic filter discovered which appears to suppress established $q \bar{q}$ states when in P -wave or higher wave

Central Production:

$$
p p \rightarrow p_{f}(G) p_{s}
$$

- p_{s} and p_{f} represent the slowest and fastest particles
- believe to be dominated by double Pomeron exchange
- Pomeron believed to have large gluonic content
-Folklore assumed that Pomeron is 0^{++}with flat distribution
-But distributions not flat
- Modelled with J=1 exchange particle:
- Pomeron transforms as a non-conserved vector current
- Data from WA102 appears to support this hypothesis

Kinematic filter seems to suppress established $q \bar{q}$ when they are in P and higher waves Close \& Kirk PL B397, 333 (1997)

The pattern of resonances depends on the vector difference of the transverse momentum recoil of the final state protons

$$
d P_{T}=\left|\vec{k}_{T_{1}}-\vec{k}_{T_{2}}\right|
$$

for
$\cdot \mathrm{dP}_{\mathrm{T}}$ large well established $q \bar{q}$ states are prominent

- dP_{T} small, established $q \bar{q}$ states are suppressed while $f_{0}(1500), f_{0}(1710), f_{0}(980)$ survive

ϕ, the angle between k_{T} vectors

Close Kirk \& Schuler give a good account of the data modeling Pomeron as Vector exchange particle:
0^{-+}- parity requires the vector pomeron to be transversely polarized; peaks at 90°
1^{++}- one transverse the other longitudinal; peaks at 180° 2^{-+}- similar to 0^{-+}case; peaks at 0°
(helicity 2 suppressed by Bose statistics)
2^{++}- established states peak at 180° while $f_{2}(1950)$ at 0°
0^{++}- peaks at 0° for some states while others are spread out:

- $f_{0}(1500), f_{0}(1710), f_{0}(980)$ peak at small ϕ
- $f_{0}(1370)$ peaks at large ϕ

Fact that $f_{0}(1370)$ and $f_{0}(1500)$ have different ϕ dependence Indicates not just J dependent phenomena
Close, Kirk, \& Schuler PL B477, 13 (2000); Close \& Schuler PLB 458, 127 (1999); PLB 464, 279 (1999)
$0^{++}, 2^{++}$expect both TT \& LL contributions

$$
\frac{d \sigma}{d \phi} \sim\left[1+\frac{\sqrt{t_{1} t_{2}}}{\mu^{2}} \frac{a_{T}}{a_{L}} \cos \phi\right]^{2}
$$

described by varying $\mu^{2} a_{L} / a_{T}$

$$
\begin{aligned}
& =-0.5 \mathrm{GeV}^{2} \text { for } f_{0}(1370) \\
& =+0.7 \mathrm{GeV}^{2} \text { for } \mathrm{f}_{0}(1500) \\
& =-0.4 \mathrm{GeV}^{2} \text { for } \mathrm{f}_{2}(1270) \\
& =+0.7 \mathrm{GeV}^{2} \text { for } \mathrm{f}_{0}(1950)
\end{aligned}
$$

Close, Kirk, \& Schuler PL B477, 13 (2000)
ϕ distributions fitted with only 1 parameter

Hybrid Mesons:

Hybrid mesons are defined as those in
which the gluonic component is non-trivial
Two types of hybrids:
-Vibrational hybrids
-Topological hybrids

Hybrids

- Quarks move in effective potentials of adiabatically varying state of flux tubes
- A given adiabatic surface corresponds to various string topologies and excitations
- In Flux-Tube model the lowest excited adiabatic surface corresponds to transverse excitations

Hybrids: Lattice QCD

- Expect that can treat heavy quark mesons like a diatomic molecule - Slow moving heavy quarks
- Fast moving gluons and sea quarks
-Excited states have non-trivial representation of the flux tube symmetry
-Calculate energy levels of fast degrees of freedom as a function of $Q Q$ separation

- Levels define an adiabatic surface (or potential) ${ }^{\text {r (fm) }}$
-Describe heavy quarks in leading Born-Oppenheimer approximation by Schrodinger eqn using each of these potentials

Label by:

- Magnitude of Λ of the projection of the total angular mometum of the gluon field onto the molecular axis
- $\eta= \pm 1$ the symmetry under charge conjugation combined with spatial inversion about the midpoint between Q and Q
$\Lambda=0,1,2 . . \quad \Sigma, \Pi, \Delta$
9 even
o odd

\pm superscript for Σ states for odd or even symmetry under a reflection in a plane containing the molecular axis
- Calculate energies using the adiabatic potentials
- For light quark hybrids also calculate masses directly

- For light quark sector calculate masses directly
- Limited to masses of lightest exotic states
$\boldsymbol{I}=\boldsymbol{I}\left\{\begin{array}{cc|l}\text { date } & \text { ref. } & \text { mass/MeV } \\ \hline 1996 & \text { Lacock:1996vy } & 1880(200) \\ 1996 & \text { Bernard:1997ib } & 1970(90)(300) \\ 1998 & \text { Lacock:1998be } & 1900(200) \\ 1998 & \text { McNeile:1998cp } & 2110(100) \\ 2002 & \text { Luo:2002rz } & 2013(26)(71) \\ 2002 & \text { Bernard:2002rz } & 2033(70) \\ 2002 & \text { Bernard:2002rz } & 1854(65)\end{array}\right.$
- Need to map out the higher adiabatic surfaces to test our understanding of "Soft QCD"
- Not enough to discover one meson with exotic quantum numbers
- Need to find enough excited states to map out the excited surfaces

Juge, Kuti, and Morningstar,
Nucl. Phys. (Proc. Suppl.) 63A-C, 326 (1998)

Flux Tube Model

Need model to calculate hybrid properties:
Flux tube model is based on the strong coupling Hamiltonian lattice QCD

- Based on quark and flux-tube degrees of freedom
-Provides a unified framework of: conventional hadrons, multiquark states, hybrids glueballs
Expect strong mixing between non-spin exotic hybrids and conventional mesons

Hybrids

- Flux tube model based on the strong coupling limit of QCD
- Eigenstates consist of quarks on lattice sites connected by paths of flux links
Two types of hybrids:
-Vibrational hybrids
-Topological hybrids
-Quarks move in effective potentials of adiabatically varying state of flux tubes
- A given adiabatic surface corresponds to various string topologies and excitations
-Conventional hadrons correspond to gluon fields in ground states
-Hybrids correspond to excitations of quantum strings
- Lowest excited adiabatic surface corresponds to
transverse excitations

adiabatic
small oscillation
nonrelativistic beads

$$
m_{b}=b a
$$

S. Godfrey, Carleton University
http://www.physics.adelaide.edu.au/~dleinweb/index.htmpl
transverse phonon modes

ground state
$\begin{array}{ll}\begin{array}{ll}\text { Hybrid mesons } & \text { Lowest mass hybrids } \\ \text { at } 1.9 \mathrm{GeV}\end{array} \\ 1 \mathrm{GeV} \text { mass difference (} \pi / \mathrm{r}) & \begin{array}{l}\text { Doubly degenerate: } \\ \mathrm{J}^{\text {PC }}=0^{+-} 0^{++} 1^{+-} 1^{-+}\end{array} \\ 2^{+-} 2^{-+} 1^{++} 1^{--}\end{array}$ at 1.9 GeV
Doubly degenerate: $J^{P C}=0^{+-} 0^{-+} 1^{+-} 1^{-+}$ $2^{+-} 2^{-+} 1^{++} 1^{--}$

Expect degeneracies to be broken by different excitation energies of flux tube modes, spin dependence, mixings with $q \bar{q}$

Lattice results generally
consistent with these predictions

$$
\begin{aligned}
& M\left(1^{+}\right) \sim 1.9 \mathrm{GeV} \\
& M\left(0^{+-}\right) \sim 2.1 \mathrm{GeV} \\
& M\left(2^{+-}\right) \sim 2.1 \mathrm{GeV}
\end{aligned}
$$

S. Godfrey, Carleton University

UKQCD; Lacock et ${ }^{\text {Jall }}$ pl PR D54, 6997 (1996); PL B401, 308 (1997)

Model	$u \bar{u}$	$s \bar{s}$	$c \bar{c}$	$b \bar{b}$
MIT Bag	$1.3-1.8$		~ 3.9	10.5
HHKR adiabatic bag			3.9	$10.49(20)$
QCD Sum Rules	$2.1-2.5$		$4.1-5.3$	$10.6-11.2$
Flux Tube	$1.8-2.0$		$4.2-4.5$	$10.8-11.1$
BCS	$1.8-1.9$	$2.1-2.2$	$4.1-4.2$	
lattice (UKQCD)		$2.00(20)$		
lattice (MILC)	$1.97(9)(30)^{a}$	$2.17(8)(20)$	$4.39(8)(20)$	
lattice (adiabatic)			4.2	10.8
lattice (adiabatic)				10.8
lattice (NRQCD)				$11.10(16)$

Decay Properties:

Restrict Discussion to JPC Exotics:

$$
\begin{aligned}
\hat{\rho}_{g} & \rightarrow\left[\pi \eta, \pi \eta^{\prime}, \pi \rho, K^{*} K, \eta \rho, \ldots\right] \\
& \rightarrow\left[\pi b_{1}, \pi f_{1}, \eta a_{1}, K K_{1}, \ldots\right] \\
\hat{\omega}_{g} & \rightarrow\left[K^{*} K, \pi \pi(1300), \eta \eta^{\prime}, \ldots\right]_{P} \\
& \rightarrow\left[a_{1} \pi, \bar{K} K_{1}, \ldots\right]_{S} \\
\hat{K}_{g} & \rightarrow\left[\pi K, \eta K, \phi K, \eta^{\prime} K, \ldots\right]_{P} \\
& \rightarrow\left[\pi K_{1}, K a_{1}, K b_{1}, \ldots\right]_{S} \\
\hat{\phi}_{g} & \rightarrow\left[K \bar{K}(1400), K K^{*}, \eta \eta^{\prime}, \ldots\right]_{P} \\
& \rightarrow\left[\bar{K} K_{1}\right]_{S} \\
& \rightarrow\left[\bar{K} K_{1}\right]_{D}
\end{aligned}
$$

The highlighted decays uniquely signal 1^{-+}state

Decay Properties:

Flux Tube Model:

Expect stronger coupling to one s-wave and one p-wave final state meson

Bag Model:

Expect one excited meson and one ground state meson

But also possible that excited quark loses its angular Momentum to orbital ang. mom.

Decay Properties:

Decays need to preserve symmetries
A General Selection Rule:
To preserve symmetries of quark and colour fields about the quarks the Π_{u} hybrid must decay to Meson in a P-wave
e.g. cannot transfer angular momentum as relative angular momentum but appears as internal angular momentum

This appears to be a universal selection rule
For 1^{-+}exotic expect $\hat{\rho} \rightarrow b_{1} \pi$, $f_{1} \pi$ modes to dominate
-S-wave decays have large phase space so may be too broad to be seen
-Favoured final state contains broad P -wave meson

$$
\begin{array}{rlrl}
\cdot \text { Eg } & \omega_{g_{1}}^{-+} & \rightarrow\left[a_{1} \pi\right]_{S} & \\
& \rightarrow[\pi \approx 100 \mathrm{MeV}) \\
& \rightarrow[1300) \pi]_{P} & (\Gamma \approx 100 \mathrm{MeV})
\end{array}
$$

- Best bets (according to flux tube model)

$$
\begin{array}{ll}
\hat{\rho}_{g_{1}}^{-+} \rightarrow\left[\pi b_{1}\right]_{S} & (\Gamma \approx 100 \mathrm{MeV}) \\
\hat{\omega}_{g_{2}}^{+-} \rightarrow\left[\pi b_{1}\right]_{P} & (\Gamma \approx 500 \mathrm{MeV}) \\
\hat{\phi}_{g_{2}}^{+-} \rightarrow\left[K K^{*}\right]_{P} & (\Gamma \approx 250 \mathrm{MeV})
\end{array}
$$

For exotic hybrids:

A	B, C	L	Γ_{1}	Γ_{2}
$\pi 1^{-+}$	$b_{1}(1235) \pi$	S	100	100
		D	20	30
	$f_{1}(1285) \pi$	S	30	30
		D	20	20
$\omega 1^{-+}$	$a_{1}(1260) \pi$	S	90	100
		D	60	70
	$K_{1}(1400) K$	S	100	100
$\pi 2^{+-}$	$a_{2}(1320) \pi$	P	350	450
	$a_{1}(1260) \pi$	P	100	100
	$h_{1}(1170) \pi$	P	125	150

$\hat{a}_{0}, \hat{f}_{0}^{\prime}$ too broad $\hat{\omega}_{1}$ decays to $\left[a_{1} \pi\right]_{S}$
with $\Gamma \approx 100 \mathrm{MeV}$ similarly for $\hat{\phi}_{1}$

Isgur, Kokoski and Paton, PRL, 54, 907 Close \& Page, NP B443, 233 (1995)

A	B, C	L	Γ_{1}	Γ_{2}
$\phi 1^{-+}$	$K_{1}(1270) K$	D	90	80
	$K_{1}(1400) K$	S	200	250
$\pi 0^{+-}$	$a_{1}(1260) \pi$	P	600	800
	$h_{1}(1170) \pi$	P	100	100
$\omega 0^{+-}$	$b_{1}(1235) \pi$	P	250	250
$\phi 0^{+-}$	$K_{1}(1270) K$	P	500	800
	$K_{1}(1400) K$	P	70	50
$\omega 2^{+-}$	$b_{1}(1235) \pi$	P	350	500
$\phi 2^{+-}$	$K_{2}^{*}(1430) K$	P	300	250
	$K_{1}(1400) K$	P	250	200

Best bets:
$\hat{\rho}_{1} \rightarrow\left[b_{1} \pi\right]_{s},\left[f_{1} \pi\right]_{s}$
$\hat{f}_{2} \rightarrow\left[b_{1} \pi\right]_{P}(\Gamma \approx 350 \mathrm{MeV})$
$\hat{f}_{2}^{\prime} \rightarrow\left[K_{2}^{*} \bar{K}\right]_{P}(\Gamma \approx 300 \mathrm{MeV})$ $\rightarrow\left[K_{1} \bar{K}\right]_{P} \quad(\Gamma \approx 250 \mathrm{MeV})$

But there is variation in model predictions

For non exotic hybrids:

To distinguish non-exotic hybrids from conventional states need detailed predictions of properties:

π (1800)

TABLE III. Decay of quark model and hybrid $\pi(1800)$.
Partial widths to final states

State	$\pi \rho$	$\omega \rho$	$\rho(1465) \pi$	$f_{0}(1300) \pi$	$f_{2} \pi$	$K^{*} K$
$\pi_{3 S}(1800)$	30	74	56	6	29	36
$\pi_{H}(1800)$	30	-	30	170	6	5

$\rho \omega$ can be used as discriminator between possibilities observed in $\pi f_{0}(1300)$
(but recent paper by Swanson and Szczepaniak [PR D56, 5692] predicts small $\rho \omega$ partial width)

ρ^{\prime} and ω^{\prime}

Close \& Page, PR D56, 1584 (1997)

Expect mixing: $|V\rangle=\alpha\left|2^{3} S_{1}\right\rangle+\beta\left|1^{3} D_{1}\right\rangle+\gamma\left|V_{H}\right\rangle$

	$\pi \pi$	$\omega \pi$	$\rho \eta$	$\rho \rho$	$K K$	$K^{*} K$	$h_{1} \pi$	$a_{1} \pi$	Total
$\rho_{2 S}(1465)$	74	122	25	-	35	19	1	3	279
$\rho_{1 D}(1700)$	48	35	16	14	36	26	124	134	435
$\rho_{H}(1500)$	0	5	1	0	0	0	0	140	≈ 150

the $\pi \mathrm{h}_{1}$ and $\pi \mathrm{a}_{1}$ can discriminate between $\rho_{2 \mathrm{~S}}, \rho_{1 \mathrm{D}}$ and ρ_{H} or to disentangle the mixings

	$\rho \pi$	$\omega \eta$	$K K$	$K^{*} K$	$b_{1} \pi$	Total
$\omega_{2 S}(1419)$	328	12	31	5	1	378
$\omega_{1 D}(1649)$	101	13	35	21	371	542
$\omega_{H}(1500)$	20	1	0	0	0	≈ 20

$\omega(1420) \rightarrow \pi b_{1}$ and $\omega(1600) \rightarrow \pi b_{1}$ are observed to be small so both unlikely to be pure $1^{3} D_{1}$ state implying ω_{H} admixture

Production of Hybrids:

1. J/ $\psi \rightarrow \gamma \mathrm{X}$
2. $p \bar{p}$ annihilation
3. peripheral production (Dorofeev)
4. photoproduction (Moinester)

Radiative J/w Decay (CLEO-c/ BESIII)

$$
\left.\left.\begin{array}{rl}
\mathscr{L}, \psi \rightarrow \gamma x \\
\rightarrow \text { hadrons }
\end{array}\right\} \begin{array}{l}
\text { gluon } \\
\text { rich } \\
\text { channels } \\
c
\end{array}\right)
$$

Menen particle | Meson state x |
| :---: |

Beam particle is excited and continuous to move forward exchanging momenta and quantum \#'s with recoiling nucleus eg: LASS, E852, BENKEI, VES, GAMS
Evidence for $\hat{\rho}(1600)$ (Dunnweber, Dorofeev)
Serpukhov: $\quad \pi^{-} N \rightarrow\left(\pi^{+} \pi^{-} \pi^{-}\right) N \quad 40 \mathrm{GeV} / \mathrm{c} \pi$ beam in $\rho^{0} \pi^{-}, \pi \eta$ and πb_{1}
BNL E852: $\quad \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$ at $18 \mathrm{GeV} / \mathrm{c} \pi$ beam signal in $\pi f_{1}(1285)$

- No reason a priori to expect that any type of hadron is preferred over any other in this mechanism
$\square \pi$ exchange only provides access to natural parity states
- Advantage is high statistics E852 Results: $\quad \pi^{-} \mathrm{P} \rightarrow \pi^{+} \pi^{-} \pi^{-} \mathrm{p} \quad$ At $18 \mathrm{GeV} / \mathrm{c}$

$$
\mathrm{M}\left(\pi^{+} \pi^{-} \pi^{-}\right) \quad\left[\mathrm{GeV} / \mathrm{c}^{2}\right]
$$

to partial wave analysis

Results of Partial Wave Analysis

Benchmark resonances

An Exotic Signal in E852

Correlation of Phase \& Intensity

From
Non-exotic Wave
due to imperfectly
understood acceptance

Photoproduction:

Qualitative alternative to hadronic peripheral production - series of preferred excitations is likely to be different
-strong source of ss states

-Production of exotic hybrids is favoured: $\mathrm{J}^{P C}=\mathrm{O}^{+-}, 1^{-+}, 2^{+-}$

- Almost no data is available

Compare $\boldsymbol{\pi} \mathbf{p}$ and $\gamma \mathbf{p}$ Data

Compare statistics and shapes

$$
\pi^{-} \mathrm{p} \rightarrow \pi^{+} \pi^{-} \pi^{-} \mathrm{p} \quad \gamma \mathrm{p} \rightarrow \pi^{+} \pi^{+} \pi^{-} \mathrm{n}
$$

ca. 1998
@ 18 GeV
ca. 1993
@ 19 GeV

$$
\mathrm{M}(3 \pi)\left[\mathrm{GeV} / \mathrm{c}^{2}\right]
$$

S. Godfrey, Carleton University

Summary

- The discovery and mapping out of the glueball and hybrid meson spectrum is a crucial test of QCD
- It will help validate Lattice QCD as an important computational tool for non-perturbative field theory
- It will take detailed studies to distinguish Glueball and Hybrid candidates from conventional $q \bar{q}$ states
- This will require extremely high statistics experiments
- To measure meson properties
- Partial widths
- Production mechanisms
- t-channel exchange
- central production distributions

The XYZ's of cc: Hints of Exotic New Mesons?

An exercise in hadron phenomenology

- Spectroscopy: Conventional and Hybrids

- New Charm States
- $D_{S J}{ }^{\star}(2317), D_{s J}(2460), D_{s J}(2630)$
- $D_{0}{ }^{*}(2308), D_{1}^{\prime}(2440)$,
- New Charmonium states
- X(3872), X(3943), Y(3943), Z(3931) and Y(4260)
- Summary

Bali: hep-ph/0010032
-Quarks move in adiabatic potentials

- Lowest excited adiabatic surface corresponds to transverse excitations
- Doubly degenerate lowest mass hybrids:
- JPC $=0^{+-} 0^{-+} 1^{+-} 1^{-+} 2^{+-} 2^{-+} 1^{++} 1^{--}$
T. BARNES, F. E. CLOSE, AND E. S. SWANSON PRD52, 5242 (1995).

TABLE I. Predicted 1^{-+}hybrid masses.

State	mass (GeV)	Model	Ref.
H_{c}	≈ 3.9	Adiabatic bag model	$[20]$
	$4.2-4.5$	Flux tube model	$[12-14]$
	$4.1-5.3$	QCD sum rules (most after 1984)	$[26-28]$
	$4.19(3) \pm$ syst.	HQLGT	$[23]$

S. Godfrey, Carleton University

Hybrids Decays

Important decay modes:

1. $\psi_{g} \rightarrow D^{(*,, *)} \bar{D}^{(*,, *)}$
hybrid decays to P-wave + S-wave mesons:

- $D(L=0)+D^{* *}(L=1)$ should dominate
- DD should not occur and DD* have small widths

2. $\psi_{g} \rightarrow(c \bar{c})(g g) \rightarrow(c \bar{c})+(\pi \pi, \eta, \ldots)$

- Offers cleanest signature
- IF total width small significant BR
- $\psi_{g}\left(\mathrm{O}^{+-}, 2^{+-}\right) \rightarrow J / \psi+(\pi \pi, \eta)$ and $\psi_{g}\left(1^{-+}\right) \rightarrow \eta_{c}+(\pi \pi, \eta)$
-LGT (UKQCD) finds these decays to be large ~O(10's MeV)
(shown for χ_{b} S where S is light scalar) [hep-lat/0201006]

$D_{S J}(2317)$ \& $D_{5 J}(2460)$

BABAR:

Phys.Rev.Lett. 90, 242001 (2003)

FIG. 2 (color online). The $D_{s}^{+} \pi^{0}$ mass distribution for (a) the decay $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$and (b) the decay $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+} \pi^{0}$. The fits to the mass distributions as described in the text are indicated by the curves.
$M=2316.8 \pm 0.4 \mathrm{MeV}$
$\Gamma \leq 3.8 \mathrm{MeV}$

CLEO:

Phys.Rev. D68, 032002 (2003)

$M=2463 \pm 0.4 \mathrm{MeV}$ $\Gamma \leq 3.5 \mathrm{MeV}$
(Widths from Gowdy, Moriond talk)

- Also seen and studied by BELLE
-Properties consistent with $\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{+}$and 1^{+}
S. Godfrey, Carleton University

$j_{q}=1 / 2$ predicted to be broad and decay to $D K$ and $D^{*} K$ not previously observed

But $D^{*}{ }_{\text {sj }}(2317)$ below $D K$ threshold and very narrow!
$D_{\text {sJ }}(2460)$ below $D^{*} K$ threshold and very narrow!

Created major industry: (almost 300 citations!)
-Multiquark state

- Molecular state
- D π atom
-Conventional cs state but model needs improvement

The problem is the mass predictions
Once the masses are fixed the narrow widths follow

Start with non-strange charm mesons

Masses: Good agreement with predicted splittings. Strong Decays:

Decay		Theory	Expt
$D_{2}^{*} \rightarrow D^{*} \pi$ $+D \pi$	$\frac{3}{10} D^{2} q^{5}+\frac{1}{5} D^{2} q^{15}$	63	23
$D_{1} \rightarrow D^{*} \pi$	$\frac{1}{2}\left[\sin ^{2}\left(\theta+\theta_{0}\right) S^{2} q+\cos \left(\theta+\theta_{0}\right) D^{2} q^{5}\right]$	26	18.9
$D_{1} \rightarrow D^{*} \pi$	$\frac{1}{2}\left[\cos ^{2}\left(\theta+\theta_{0}\right) S^{2} q+\sin \left(\theta+\theta_{0}\right) D^{2} q^{5}\right]$	250	329
$D_{0}^{*} \rightarrow D \pi$	$\frac{1}{2} S^{2} q$	290	262

$\theta_{0}=35.3^{\circ}$ (arises from Clebschs)
In HQL one D_{1} becomes pure S-wave the other pure D-wave Good agreement between theory and experiment

Charmed mesons:

- Almost all the theoretical effort has concentrated on the
$D_{\text {sJ }}$ states
- But important to test the models on the D states which also contain important information

Decay	Expt*	Theory
$D_{2}^{*} \rightarrow D^{*} \pi$ $+D \pi$	43.8 ± 2	55
$D_{1} \rightarrow D^{*} \pi$	20.3	25
$D_{1} \rightarrow D^{*} \pi$	339 ± 76	244
$D_{0}^{*} \rightarrow D \pi$	276 ± 66	277

* Average of PDG Belle PR D69 112002 (2004)

FOCUS PLB 586, 11 (2004)
CLEO NPA 663, 647 (2000)
CDF JP Conf Ser 9, 67 (2005)
Theory: PR D43, 1679 (1991), (TRI-PP-86-51) PR D72, 054029 (2005)
S. Godfrey, Carleton University

Radiative Transitions

-Transitions probe the internal structure

- Radiative E1 transitions given by:

$$
\begin{gathered}
\left.\Gamma(i \rightarrow f+\gamma)=\frac{4}{27} \alpha\left\langle e_{Q}\right\rangle^{2} \omega^{3}\left(2 J_{f}+1\right)\left|\left\langle{ }^{2 s+1} S_{J}\right| r\right|^{2 s+1} P_{J}\right\rangle \mid S_{\text {if }} \\
\left\langle e_{Q}\right\rangle=\frac{m_{q} e_{c}+m_{c} e_{\bar{q}}}{m_{c}+m_{o}}
\end{gathered} \begin{array}{ll}
D_{s 1}^{3 / 2}={ }^{1} P_{1} \cos \theta+{ }^{3} P_{1} \sin \theta & \theta_{\mathrm{uc}}=-26^{0}
\end{array}
$$

Initial state	Final State	Width	BR
$\mathrm{D}^{*+}{ }_{2}(2502)$	$\mathrm{D}^{*+} \gamma$	590 keV	2.5%
$\mathrm{D}_{1}(2456)$	$\mathrm{D}^{*} \gamma$	87 keV	0.44%
	$\mathrm{D} \gamma$	635 keV	3.2%
$\mathrm{D}^{*}(2467)$	$\mathrm{D}^{*} \gamma$	381 keV	$\sim 10^{-3}$
	$\mathrm{D} \gamma$	163 keV	$\sim 10^{-3}$
$\mathrm{D}^{*+}{ }_{0}(2308)$	$\mathrm{D}^{*+} \gamma$	288 keV	10^{-3}

- Should be observable
- Can be used to determine mixing angle!

$$
\frac{\Gamma\left({ }^{3} P_{1} \rightarrow{ }^{3} S_{1}+\gamma\right)}{\Gamma\left({ }^{1} P_{1} \rightarrow{ }^{1} S_{0}+\gamma\right)}=\frac{\omega_{t}^{3}}{\omega_{s}^{3}} \frac{\left|\langle r\rangle_{t}\right|^{2}}{\left|\langle r\rangle_{s}\right|^{2}} \frac{\cos ^{2} \theta}{\sin ^{2} \theta}
$$

Good agreement between quark model Predictions and experiment for charmed P -wave mesons

Models explaining the $D_{s}(2317)$ must also describe the $D L=1$ states

Strong Decays

In heavy quark limit $4 \mathrm{~L}=1$ states grouped into 2 doublets Characterized by angular momentum of light quark:
$j=3 / 2$
$j=1 / 2$
$j=3 / 2$ are predicted to be relatively narrow identified with $D_{s 1}(2536)$ and $D_{S J}(2573)$

		Theory	Expt
$D_{s 2}^{*} \rightarrow D^{*} K$ $+D K$	$\frac{2}{5} D^{2} q^{5}+\frac{4}{15} D^{2} q^{\prime 5}$	21	$15^{+5}-4$
$D_{s 1} \rightarrow D^{*} K$	$\frac{2}{3}\left[\sin ^{2}\left(\theta+\theta_{0}\right) S^{2} q+\cos \left(\theta+\theta_{0}\right) D^{2} q^{5}\right]$	0.3	<2.3

Reasonable agreement with model predictions
$j=1 / 2$ predicted to be broad and decay to $D K$ and $D^{*} K$ not previously observed

But $D_{\text {* }}{ }_{\text {S }}(2317)$ below $D K$ threshold
$D_{\text {sJ }}(2460)$ below $D^{*} K$ threshold

Only $\quad D_{s} \rightarrow D_{s}^{*} \pi^{0}$ allowed but violates I-spin so small Estimate: $\Gamma\left(D_{s 0}^{*} \rightarrow D_{s} \pi^{0}\right)=\Gamma\left(D_{s 1} \rightarrow D_{s}^{*} \pi^{0}\right) \approx 10 \mathrm{keV}$

Radiative Transitions: expected to have large BR's

Initial state $)$	Final State	Width	BR	$/ \mathrm{D}_{\mathrm{s}} \pi^{0}$	$/ \mathrm{D}_{\mathrm{s}} \pi^{0}$
$\mathrm{D}^{*+}{ }_{\mathrm{s} 0}(2317)$	$\mathrm{D}^{*+}{ }_{\mathrm{s}} \gamma$	1.9 keV	16%	0.19	<0.059 (CLEO)
					<0.18 (Belle)
	$\mathrm{D}^{+}{ }_{\mathrm{s}} \gamma$	0		0	<0.052 (CLEO)
					<0.05 (Belle)
$\mathrm{D}_{\mathrm{s} 1}(2463)$	$\mathrm{D}^{*}{ }_{\mathrm{s}} \gamma$	5.5 keV	24%	0.56	<0.16 (CLEO)
					<0.31 (Belle)
					0.274 ± 0.049 (Babar)
		6.2 keV	27%	0.63	0.44 ± 0.17 (Babar)
					0.55 ± 0.15 (Belle)
	$\mathrm{D}_{\mathrm{s}} \pi^{0} \gamma$	$\sim 10 \mathrm{keV}$	43%		
	$\mathrm{D}_{\mathrm{s}} \pi \pi$	$\sim 1.6 \mathrm{keV}$	7%	0.16	0.14 ± 0.04 (Belle)

Radiative transitions are expected to have large BR's so their measurement is an important probe

$\mathcal{B}\left(D_{s J}(2460)^{-} \rightarrow D_{s}^{*-} \pi^{0}\right)$	$=0.51 \pm 0.11 \pm 0.09$
$\mathcal{B}\left(D_{s J}(2460)^{-} \rightarrow D_{s}^{-} \gamma\right)$	$=0.15 \pm 0.03 \pm 0.02$

Gowdy (Babar) Moriond talk
$B\left(\mathrm{D}_{\mathrm{s} .}(2460)^{+} \rightarrow \mathrm{D}_{\mathrm{s}}^{+} \pi^{+} \pi^{-}\right)=0.04 \pm 0.01$ (stat. only)
Where does the other $(30 \pm 15) \%$ go?
Recall: $D_{s 1}^{1 / 2}=-{ }^{1} P_{1} \sin \theta+{ }^{3} P_{1} \cos \theta \quad$ PLB568, 254 (2003)
So $D_{s 1}(2463) \rightarrow D_{s}^{*} \gamma$ is where it goes
PRD72, 054029 (2005)
Can be used to determine mixing angle

$$
\frac{\Gamma\left({ }^{3} P_{1} \rightarrow{ }^{3} S_{1}+\gamma\right)}{\Gamma\left({ }^{1} P_{1} \rightarrow{ }^{1} S_{0}+\gamma\right)}=\frac{\omega_{t}^{3}}{\omega_{s}^{3}} \frac{\left|\langle r\rangle_{t}\right|^{2}}{\left|\langle r\rangle_{s}\right|^{2}} \frac{\cos ^{2} \theta}{\sin ^{2} \theta}
$$

Appears to be conventional cs $L=1$ states with masses shifted due to strong S-wave coupling to DK(*)

Multiquark States

 Barnes Close \& Lipkin hep-ph/0305025 van Beveren and Rupp hep-ph/0305035Either DK molecule or cqqs object?

- A likely possibility with much in common with description of $f_{0}(980)$ and $a_{0}(980)$
- $D_{s j}(2317)$ lies just below DK threshold $f_{0}(980)$ and $a_{0}(980)$ lie below KK
- Both couple strongly to nearby channels $D_{s j}(2463)$ could be $D^{*} K$ molecule lie E/I puzzle
- No fall apart mode since DK threshold is 2.36 GeV

Predictions:

If $4 q$ states

- Expect I=1 baryonium
-would have fall apart to $D_{s} \pi$ so would be broad
- Small admixture of $I=1$ explains narrow width to $D_{s} \pi^{0}$
- Search for $D_{s} \pi^{ \pm}$events
- Expect exotic partners

If molecule:

- Due to coupling to S-wave DK threshold
- KK attraction in I=0,1 channels
- Repulsion between KK continuum and scalar qq state
- If DK molecule I=1 partner less likely
- Expect anomalous em couplings relative to qq state
- Search for $D_{s}{ }^{+} \gamma$ which is forbidden for ${ }^{3} P_{0}$ state
van Beveren \& Rupp (but not Barnes Close \& Lipkin)
Predict:
- D_{0}^{*} state with mass 2100-2300 MeV
- Above $D \pi$ threshold so width several hundred MeV

```
3P
3P
```

Analogous to $a_{0}(980)$ and $a_{0}(1450)$ states

Further Tests

Chen \& Li hep-ph/0307075
Datta \& O'Donnell hep-ph/0307106
Suzuki hep-ph/0307118
Cheng hep-ph/0307168

- B decays

$$
\frac{B\left(B \rightarrow D_{s J}^{*}+M\right)}{B\left(B \rightarrow D_{s}^{*}+M\right)} \approx 1 \quad \text { if } q \bar{q}
$$

$$
\frac{B\left(B \rightarrow D_{s J}^{*}+M\right)}{B\left(B \rightarrow D_{s}^{*}+M\right)} \approx 0.1 \quad \text { if molecule / multiquark }
$$

$$
(\mathrm{M}=\mathrm{D}, \pi, \mathrm{~K})
$$

- Claim is that the BR favours multiquarks
- Based on $f_{D_{s J}} \approx f_{D_{s}^{*}}$

Summary

-The D L=1 states are described well by the quark model

- Two new narrow states have been observed with cs content

$$
D_{s J}^{*}(2317) \text { and } D_{s J}(2460)
$$

-Their masses are lower than expected for the missing 0^{+}and 1^{+}states in cs spectroscopy
-If cs states then expect very small total widths with Large branching ratios to $\mathrm{D}^{*+} \gamma$ and $\mathrm{D}^{+}{ }_{s} \gamma$

- Measuring radiative transitions is crucial test
- Absence supports molecule designation
-Then need to find cs states
- B and $B_{s} P$-wave states could shed some light on the problem
- No model of the $D_{s J}$ states gives a good description of both the both the $D_{s J}$ and D_{s} states simultaneously

$D_{5 J}(2632)$

First Observation of a Narrow Charm-Strange Meson $D_{\mathrm{sJ}}^{+}(2632) \rightarrow \mathrm{D}_{\mathrm{s}}^{+} \eta$ and $\mathrm{D}^{0} \mathrm{~K}^{+}$ (The SELEX Collaboration) Phys.Rev.Lett. 93, 242001 (2004) hep-ex/0406045

Seen in hadro-production in $D_{s}^{+} \eta$ and $D^{0} K^{+}$ $M=2632.6 \pm 1.6 \mathrm{MeV} / \mathrm{c}^{2} \quad \Gamma<17 \mathrm{MeV} / \mathrm{c}^{2}$ at 90% C.L.

$$
\Gamma\left(D^{0} K^{+}\right) / \Gamma\left(D_{s}^{+} \eta\right)=0.16 \pm 0.06
$$

(Not seen by CLEO, Belle, Babar)

Possibilities:

- $2^{3} S_{1}(c s)$ State
-cs Hybrid
-2-meson molecule
cs hybrid expected to be ~3170 MeV
Most plausible cs state is $2^{3} S_{1}$ with $M\left(2^{3} S_{1}\right)=2730 \mathrm{MeV}$ \& $M\left(1^{3} D_{1}\right)=2900 \mathrm{MeV}$
masses could be shifted by mixing with 2-meson continuum

Assuming the $D_{S J}(2632)$ is $2^{3} S_{1}(c \bar{s})$ with $M=2632$

The allowed open-flavour decay modes are: $D K, D_{s} \eta, D^{*} K$
SELEX finds:
$B R\left(D K / D_{s} \eta\right)=0.32 \pm 0.12 \quad$ (assuming $B R\left(D^{0} K^{+}\right)=B R\left(D^{+} K^{0}\right)$)
In ${ }^{3} P_{0}$ model for preferred expect:

$$
\begin{aligned}
& \Gamma\left(D^{*} K\right)>\Gamma(D K) \gg \Gamma\left(D_{s} \eta\right) \\
& \Gamma\left(D_{s J}(2632)\right)=36 \mathrm{MeV} \\
& \Gamma(D K) / \Gamma\left(D_{s} \eta\right) \approx 9
\end{aligned}
$$

Not consistent with experiment

It is possible to tune model to achieve agreement with experiment

But this tuning seems unlikely

SELEX $D_{s j}$ (2632) state:

1. Needs confirmation
2. If $2^{3} S_{1}$ state expect to see $D^{*} K$ decay mode
3. Should see the $2^{3} S_{1}$ in B decays
4. The $1^{3} \mathrm{D}_{1}$ state should be $\sim 200 \mathrm{MeV}$ higher in mass

$X(3943), Y(3943)$, and $Z(3931)$

$2 P$ or not $2 P$ that is the question!

S. Godfrey, Carleton University

Strong Decays

The ${ }^{3} P_{0}$ decay model describes hadron decays reasonably well

Important to understand charmonium states to identify states that don't fit and might represent new spectroscopies

X(3940)

Seen by Belle recoiling against J / ψ in $e^{+} e^{-}$collisions

$$
\begin{aligned}
& M=3943 \pm 6 \pm 6 \mathrm{MeV} \\
& \Gamma<52 \mathrm{MeV}
\end{aligned}
$$

$$
B R\left(X \rightarrow D D^{*}\right)=96^{+45}-32 \pm 22 \%
$$

$$
B R(X \rightarrow D D)<41 \% \quad(90 \% C L)
$$

Suggests unnatural parity state
$\mathrm{BR}(\mathrm{X} \rightarrow \omega \mathrm{J} / \psi)<26 \%(90 \% \mathrm{CL})$

- Decay to DD* but not DD suggests unnatural parity state
- Belle speculates that X is $3^{1} S_{0}$ given the $3^{3} S_{1} \psi(4040)$ - Mass is roughly correct
-. η_{c} and $\eta_{\mathrm{c}}^{\prime}$ are also produced in double charm production
See also Eichten Lane Quigg PRD73 014014(2006)
-Predicted width for $3^{1} \mathrm{~S}_{0}$ with $M=3943 \sim 50 \mathrm{MeV}$ close to $\Gamma(X(3943))$ upper bound
- Identification of $\psi(4040)$ as $3^{3} S_{1}$ state implies hyperfine splitting 88 MeV with X(3943)
-Larger than the 25 splitting and larger than predicted in potential models
- Discrepancy could be due to:
- Difficulty in fitting true pole position of $3^{3} S_{1}$ state
- Nearby thresholds with s-wave + p-wave charm mesons so possibly stronger threshold effects
- Another possibility due to dominant DD* mode is the $2^{3} P_{1} \chi_{1}{ }^{\prime}$
- Natural to try 2P cc assignment since $M\left(2^{3} P_{J}\right)=3920-3980 \mathrm{MeV}$ $\Gamma\left(2^{3} \mathrm{P}_{\mathrm{J}}\right)=30-165 \mathrm{MeV}$
-If DD* mode is dominant suggests $X(3940)$ is $2^{3} P_{1}$
-Problems: - No evidence for $1^{3} P_{1}$ in the same data
$-\Gamma\left(2^{3} P_{J}\right)=135 \mathrm{MeV}$ (for $\mathrm{M}=3943 \mathrm{MeV}$)
- Y(3943) also a candidate for $2^{3} P_{1} \chi_{1}{ }^{\prime}$

Test of ${ }^{1} S_{0} \eta_{c}$ assignment is search for this state in $\gamma \gamma \rightarrow D^{*}$

Y(3940)

See in $\omega \mathrm{J} / \psi$ subsystem of the decay $\mathrm{B} \rightarrow \mathrm{K} \pi \pi \pi \mathrm{J} / \psi$
Belle: Phys. Rev. Lett. 94, 182002 (2005)
$M=3943 \pm 11 \pm 13 \mathrm{MeV}$
$\Gamma=87 \pm 22 \pm 26 \mathrm{MeV}$
Not seen in $Y \rightarrow$ DD or DD*

Mass and width suggest radially excited P -wave charmonium

But $\omega \mathrm{J} / \psi$ decay mode is peculiar:
 $\mathrm{BR}(\mathrm{B} \rightarrow \mathrm{KY}) \mathrm{BR}(\mathrm{Y} \rightarrow \omega \mathrm{J} / \psi)=7.1 \pm 1.3 \pm 3.1 \bullet 10^{-5}$ where one expects $B R\left(B \rightarrow K^{\prime}{ }_{c J}^{\prime}\right)<B R\left(B \rightarrow K \chi_{c J}\right)=4 \bullet 10^{-4}$

Implies $\mathrm{BR}(\mathrm{Y} \rightarrow \omega \mathrm{J} / \psi)>12 \%$ which is unusual for state above open charm threshold
-Large width to $\omega \mathrm{J} / \psi$ led Belle to suggest $\mathrm{Y}(3943)$ might be hybrid

- But mass is 500 MeV below LGT estimates making hybrid assignment unlikely
- Possibility is $2^{3} P_{1}$ cc state: identifyies $Y(3943)$ as $2 P \chi_{c 1}^{\prime}$
- DD* is the dominant decay mode
- Width consistent with Y(3943): $\Gamma=135 \mathrm{MeV}$
-. $\chi_{c 1}$ is seen in B decays
$\cdot 1^{++} \rightarrow \omega \mathrm{J} / \psi$ is unusual
-but corresponding $\chi_{b 1,2}^{\prime} \rightarrow \omega \mathrm{Y}(1 \mathrm{~S})$ also seen
- Maybe rescattering: $1^{++} \rightarrow D^{*} \rightarrow \omega \mathrm{~J} / \psi$
- Maybe due to mixing with 1^{++}molecular state $X(3872)$?
-Important to - look for DD and DD*
- study angular distributions to DD and DD*
- Observed by Belle in $\gamma \gamma \rightarrow$ DD

$$
\begin{aligned}
& M=3929 \pm 5 \pm 2 \mathrm{MeV} \\
& \Gamma=29 \pm 10 \pm 2 \mathrm{MeV}
\end{aligned}
$$

- Two photon width:

$$
\Gamma_{r v} \bullet \mathrm{~B}_{\mathrm{DD}}=0.18 \pm 0.05 \pm 0.03 \mathrm{keV}
$$

-DD angular distribution consistent with J=2
-Below D* D* threshold
S. Godfrey, Carleton University

- Obvious candidate for $\chi_{c 2}^{\prime}$ (the $\chi_{c 1}^{\prime}$ cannot decay to DD)
- Predicted $\chi_{c 2}^{\prime}$ mass is 3972
$\Gamma\left(\chi_{c 2}^{\prime} \rightarrow \mathrm{DD}\right)=21.5 \mathrm{MeV}$
$\Gamma\left(\chi_{c 2}^{\prime} \rightarrow \mathrm{DD}^{*}\right)=7.1 \mathrm{MeV}$
$\Gamma=47 \mathrm{MeV}$ assuming $M\left(\chi^{\prime}{ }_{c 2}\right)=3931$
- In reasonable agreement with experiment
- Predicted $\mathrm{BR}\left(\chi_{c 2}^{\prime} \rightarrow \mathbf{D D}\right)=70 \% \Rightarrow \Gamma_{\gamma \gamma}{ }^{*} \mathrm{~B}_{\mathrm{DD}}=0.47 \mathrm{keV}$ (r_{y} from T.Barnes, IX ${ }^{\text {th }}$ Int.|.Conf. on γy Collisions, La Jolla, 1992.)
- Observed two-photon width about $1 / 2$ predicted value for $\chi_{c 2}^{\prime}$
- No reason not to believe that $Z(3930)$ is not the $\chi^{\prime}{ }_{c 2}$
- Another possibility is $\chi_{c 0}^{\prime}$ (unlikely due to angular distributions)
- Can confirm $\chi_{c 2}^{\prime}$ by searching for DD*
$\chi_{c O}^{\prime}$ only decays to DD
$\chi_{c 2}^{\prime}$ decays to $D D$ and $D D^{*}$ in ratio of $D D^{*} / D D \sim 1 / 3$
- Largest radiative transition is
$\Gamma\left(\chi_{c 2}^{\prime} \rightarrow \gamma \psi^{\prime}\right) \sim 200 \mathrm{keV}$ vs $\Gamma\left(\chi^{\prime}{ }_{c 0} \rightarrow \gamma \psi^{\prime}\right) \sim 130 \mathrm{keV}$
(ELQ find decays are suppressed due to coupled channel effects PRD73 014014(2006))

Could further study $2^{3} \mathrm{P}_{\mathrm{J}}$ states via radiative transitions:
Can find all three ${ }^{3} 2 \mathrm{P}_{\mathrm{J}}$ cc states using $\psi(4040)$ and $\psi(4160) \rightarrow \gamma \mathrm{DD}, \gamma \mathrm{DD}^{*}$

All three E1 rad BFs of the $\psi(4040)$ are $\sim 0.5 * 10^{-3}$.
These would further test whether the Z, X, Y (3.9) are 2P cc

X(3872)
New state $1^{\text {st }}$ observed by Belle: X(3871) Phys Rev. Lett. 91, 2622001 (2003) [hep-ex/0309032]
Confirmed by: CDF Phys Rev. Lett. 93, 072001 (2004)
DO Phys Rev. Lett. 93, 162002 (2004)
BABAR Phys Rev. D71, 071103 (2005)

$$
\begin{aligned}
& M=3872.0 \pm 0.6 \pm 0.5 \mathrm{MeV} \quad \Gamma<2.3 \mathrm{MeV} \text { at 90\% C.L. } \\
& \text { width consistent with detector resolution. }
\end{aligned}
$$

\author{

1. $D^{0} D^{* 0}$ molecule
 2. A charmonium hybrid
 3. $2^{3} \mathrm{P}_{\mathrm{J}} 1^{3} \mathrm{D}_{2}$ state?
 4. Glueball?
}

News Front Page

Africa Americas
Asia-Pacific
Europe
Middle East
South Asia

Science/Nature
Technology
Entertainment
Have Your Say

Country Profiles
In Depth
Programmes

RELATED SITES
BREC SPORT
BBIC WEATHER
BBBIC ONTHISDAY

Last Updated: W'ednesday, 30 April, 2003, 21:22 GMT 22:22 UK
0 Email this to a friend 国 Printable version

Physicists find 'rebel' particle

By Dr David Whitehouse
BBC News Online science editor

Physicists have found a new subatomic particle, named Ds (2317). It will help them better understand the building blocks of matter.

The particle consists of an unusual combination of more fundamental particles - quarks.

Two quarks form Ds (2317) and, curiously, its properties are not what theory predicted.

The announcement was made by physicist Antimo Palano to a packed auditorium at the Stanford Linear Accelerator Center (Slac) in the US.

The discovery was made by the BaBar international consortium, which operates a detector at Slac that analyses debris from subatomic particle collisions.

'Back to the drawing boards'

"Congratulations to BaBar," said Slac's director, Jonathan Dorfan.
"The existence of the particle is not a surprise, but its mass is lower than expected. This result will send theorists back to

SEE ALSD:

- Did quark matter strike Earth? 22 Nov 02 | Science/Nature
- Physicists make 'strange' matter 22 Aug 01 | Science/Nature
- 'Little Bang' creates cosmic soup 10 Feb 00 | Science/Nature

RELATED INTERNET LINKS:

- Quarks
- Antiparticles
- Slac
- BaBar

The $B B C$ is not responsible for the content of external internet sites

TOP SCIENCE/NATURE STORIES

 Now- Oblivion threat to 12,000 species
- Scientists find mystery particle
- Centre opens for X-rated science
- Huge rock-ice body circles Sun

Consider the charmonium possibilities:

T.Barnes,S.Godfrey, PR D69, 050400 (2004)

Eichten, Lane, Quigg, PR D69, 094019 (2004) Barnes, Godfrey, Swanson, PR D 054026 (2005)
1D and 2P multiplets only states nearby in mass $1^{3} D_{2} 1^{3} D_{3} 2^{1 P_{1}}$ have $C=-$
$1^{1} D_{2} 2^{3} P_{0} 2^{3} P_{1} 2^{3} P_{2}$ have $C=+$
But $\mathrm{X}(3872) \rightarrow \gamma \mathrm{J} / \psi$ implies $C=+$ Belle [hep-ex/0505037] Babar Gowdy Moriond talk
Angular distributions favour JPC $=1^{++}$Belle [hep-ex/0505038]
The unique surviving charmonium candidate is $2^{3} P_{1}$
BUT identification of $Z(3931)$ with $2^{3} \mathrm{P}_{2}$ implies 2P mass ~ 3940 MeV

$D^{0} D^{* 0}$ molecule or "tetraquark" is a popular/likely explanation

$y(4260)$

Discovered by Babar as enhancement in $\pi \pi \mathrm{J} / \psi$ subsystem in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \psi \pi \pi$ PRL 95, 142001(2005) 「hen-ex/05060811
$M=4259 \pm 8 \pm 4 \mathrm{MeV}$
$\Gamma=88 \pm 23 \pm 5 \mathrm{MeV}$
$\Gamma_{\text {ee }} \times \mathrm{BR}\left(\mathrm{Y} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right)=5.5 \pm 1.0 \pm 0.8 \mathrm{eV}$
ISR production tells us JPC $=1-$
Further evidence in
$\mathrm{B} \rightarrow \mathrm{K}\left(\pi^{+} \pi^{-} \mathrm{J} / \psi\right)$ PR D73, 011101(2006)

Confirmed by CLEO
hep-ex/0602034

-The first unaccounted 1-- state is the $\psi(3 D)$
-Quark models estimate $M(\psi(3 D)) \sim 4500 \mathrm{MeV}$ much too heavy for the $Y(4260)$
$Y(4260)$ represents an overpopulation of expected 1-- states

Absence of open charm production also against conventional cc state

Other explanations are:

- $4(45) \quad$ Phys Rev D72, 031503 (2005)
- Tetraquark Phys Rev D72, 031502 (2005)
-CC hybrid Phys Lett B625, 212 (2005);
Phys Lett B628, 215 (2005)
Phys Lett B631, 164 (2005)

Y(4260): Hybrid?

-Flux tube model predicts lowest cc hybrid at 4200 MeV
-LGT expects lowest cc hybrid at 4200 MeV [Phys Lett B401, 308 (1997)]

- Models of hybrids say $\Psi(0)=0$ so would have small $e^{+} e^{-}$width
-LGT found bb hybrids have large couplings to closed flavour modes
- Similar to BaBar observation of $\mathrm{Y} \rightarrow \pi^{+} \pi^{-\mathrm{J} /} / \mathrm{F}$:

$$
\begin{aligned}
& \mathrm{BR}\left(\mathrm{Y} \rightarrow \pi^{+} \pi^{-\mathrm{J} / \psi)}\right)>8.8 \% \\
& \Gamma\left(\mathrm{Y} \rightarrow \pi^{+} \pi^{-\mathrm{J}} / \psi\right)>7.7 \pm 2.1 \mathrm{MeV}
\end{aligned}
$$

- Much larger than typical charmonium transitions:

$$
\Gamma\left(\psi(3770) \rightarrow \pi^{+} \pi^{-J} / \psi\right) \sim 80 \mathrm{keV}
$$

$\cdot \mathrm{Y}$ is seen while $\psi(4040), \psi(4160) \psi(4415)$ are no \dagger

How to test $\mathrm{Y}(4260)$ hybrid assignment:

Decays:

-LGT study suggest searching for other closed charm modes with

$$
\mathrm{J}^{\mathrm{PC}=}=1^{--} J / \psi \eta, J / \psi \eta^{\prime}, \chi_{J} \omega \ldots
$$

- Models predict the dominant hybrid charmonium open-charm decay modes will be a meson pair with

S-wave ($D, D^{*}, D_{s}, D_{s}{ }^{*}$) + P-wave $\left(D_{J}, D_{s J}\right)$
-The dominant decay mode expected to be $D+D_{1}(2430)$
$D_{1}(2420)$ has width $\sim 300 \mathrm{MeV}$ and decays to $D^{*} \pi$
-Suggests search for $Y(4260)$ in $D^{*} \pi$

- Evidence of large $D_{1}(2430)$ signal would be strong evidence for hybrid
- But models of hybrids are untested so to be cautious
-If seen in other modes like $D^{*}, D_{s} D_{s}{ }^{*}$ comparable to $\pi^{+} \pi^{-J} / \psi$ maybe still hybrid but decay model not accurate

Search for Partner States: (fill in the multiplet)

- Mass ca. 4.0-4.5 GeV, with LGT preferring the higher range.
(e.g.: X.Liao and T.Manke, hep-lat/0210030)
- Confirm that no c¢ states with the same $J^{P C}$ are expected at this mass.
-Identify $J^{P C}$ partners of the hybrid candidate nearby in mass.
-The most convincing evidence:
- partners, especially $J^{P C}$ exotics.
-The f-t model expects:

$$
0^{+-}, 1^{-+}, 2^{+-}, 0^{-+}, 1^{+-}, 2^{-+}, 1^{++}, 1^{--}
$$

Summary

Many new results, considerable progress!

$D_{S J}(2317)$	Most likely $0^{+}(c \bar{S})$
$D_{S J}(2460)$	Most likely $1^{+}(c \bar{S})$
$D_{S J}(2632)$	Needs confirmation
$X(3872)$	Molecule? - see Voloshin
$X(3943)$	$\eta^{\prime \prime}{ }_{c}\left(3^{1} S_{0}\right)$-look for $\gamma \gamma \rightarrow D^{*}$
$Y(3943)$	$\chi_{c 1}^{\prime}\left(2^{3} P_{1}\right)$-look for DD \& DD*
$Z(3930)$	$\chi_{c 2}^{\prime}\left(2^{3} P_{2}\right)$-confirm by DD*
$Y(4260)$	Hybrid?

- Much more to learn; ie search for $1^{3} D 31^{3} D_{2} 1^{1} D 21^{3} F 21^{3} F 4$

Thank experimentalists for all the wonderful results they're providing
S. Godfrey, Carleton University

Final Summary

Still much interesting physics:

- Final state interactions
- Effect of decay channel coupling
-Where are the hybrids?
-Where are the glueballs?
has a justification in the strong coupling limit of Hamiltonian lattice

support from numerical lattice studies
string $V=b L$

"Discovering experimental evidence for gluonic degrees of freedom in hadron spectroscopy is, in our estimation, the most important outstanding qualitative test for QCD.

Predict that "diffractive photoproduction can produce plucked ρ, ω, and ϕ states so could be a good source for all four of the desirable exotics ..."

Gluonic Excitations of Mesons: Why They Are Missing and Where to Find Them

Nathan Isgur and Richard Kokoski
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A 7, Canada
and

Jack Paton

Department of Theoretical Phusics, University of Oxford, Oxford OXI 3NP, England (Received 28 November 1984)

We have studied the decays of the low-lying gluonic excitations of mesons (hybrids) predicted by a flux-tube model for chromodynamics. The probable reason for the absence to date of signals for such states is immediately explained: The lowest-lying hybrids decay preferentially to final states with one excited meson [e.g., $B(1235) \pi, A_{2}(1320) \pi, K^{*}(1420) \bar{K}, \pi(1300) \pi, \ldots$] rather than to two ground-state mesons (e.g., $\pi \pi, \rho \pi, K^{*} K, \ldots$). We make specific predictions of decay channels which will contain $J^{P C}$ exotic hybrid resonance signals and suggest some possibly fruitful production mechanisms

TABLE I. The dominant decays of the low-lying exotic meson hybrids.

Hybrid state ${ }^{\text {a }}$	$J^{P G}$	(Decay mode) $L_{\text {of decay }}$	Partial width (MeV)
$x_{2}{ }^{+-}(1900)$	2^{++}	$\left(\pi A_{2}\right)_{P}$	450
		$\left(\pi A_{1}\right)_{P}$	100
		$(\pi H)_{P}$	150
y_{2}^{+-}(1900)	2^{+-}	$(\pi B)_{P}$	$500\}$
z_{2}^{+-}(2100)	2^{+-}	$\begin{aligned} & {\left[\bar{K} K^{*}(1420)+\text { c.c. }\right]_{P}} \\ & \left(\bar{K} Q_{2}+\text { c.c. }\right)_{P} \end{aligned}$	$\left.\begin{array}{l} 250 \\ 200 \end{array}\right\}$
$x_{1}{ }^{-+}(1900)$	1--	$\begin{aligned} & (\pi B)_{S, D} \\ & (\pi D)_{S, D} \end{aligned}$	$\left.\begin{array}{r} 100,30 \\ 30,20 \end{array}\right\}$
$y_{1}^{-+}(1900)$	1^{-+}	$\begin{aligned} & \left(\pi A_{1}\right)_{S, D} \\ & {[\pi \pi(1300)]_{P}} \\ & \left(\bar{K} Q_{2}+\text { c.c. }\right)_{S} \end{aligned}$	$\begin{array}{r} 100,70 \\ 100 \\ -100 \end{array}$
$z_{1}^{-+}(2100)$		$\begin{aligned} & \left(\bar{K} Q_{1}+\text { c.c. }\right)_{D} \\ & \left(\bar{K} Q_{2}+\text { c.c. }\right)_{s} \\ & {[\bar{K} K(1400)+\text { c.c. }]_{P}} \end{aligned}$	$\begin{array}{r} 80 \\ 250 \\ 30 \end{array}$
$x_{0}^{+-}(1900)$	0^{++}	$\begin{aligned} & \left(\pi A_{1}\right)_{P} \\ & (\pi H)_{P} \\ & {[\pi \pi(1300)]_{S}} \end{aligned}$	$\begin{aligned} & 800 \\ & 100 \\ & 900 \end{aligned}$
y_{0}^{+-}(1900)	0^{+-}	$(\pi B)_{P}$	$250\}$
z_{0}^{+-}(2100)	0^{+-}	$\begin{aligned} & \left(\bar{K} Q_{1}+\text { c.c. }\right)_{P} \\ & \left(\bar{K} Q_{2}+\text { c.c. }\right)_{P} \\ & {[\bar{K} K(1400)+\text { c.c. }]_{S}} \end{aligned}$	$\begin{array}{r} 800 \\ 50 \\ 800 \end{array}$

[^0] state is J; the superscripts are P and C_{n}.
S. Godfrey, Car

How do we see flux tubes in spectroscopy?

Quantum-mechanically a photon sometimes behaves like a quark-antiquark pair with spins aligned

Like a vibrating string

[^0]: ${ }^{a} x, y$, and z denote the flavor states $(1 / \sqrt{2})(u \bar{u}-d \bar{d}),(1 / \sqrt{2})(u \bar{u}+d \bar{d})$, and $s \bar{s}$. The subscript on a

