The Standard Model

OUTLINE

Electroweak Unification

- Chiral fermion states
- Electroweak reactions: $e^+e^- \rightarrow f \bar{f}$
- PETRA and LEP1 data

Higgs Field

- Spontaneous symmetry breaking
- LEP2 and LHC

Weak Mixing in the Quark Sector

- CKM matrix
- CP violation in the B^0 system

Weak Mixing in the Neutrino Sector

- SNO
- Neutrino masses and Oscillations

Conclusion

Elementary Particles

Standard Model

The SM provides a general description of the physics physics currently accessible with modern particle accelerators. The minimal SM postulates that matter is composed of fundamental spin- $\frac{1}{2}$ quarks and spin- $\frac{1}{2}$ leptons interacting via spin one gauge bosons.

Electroweak Lagrangian:

 $\mathcal{L} = \mathcal{L}(\text{weak CC}) + \mathcal{L}(\text{weak NC}) + \mathcal{L}(\text{em NC})$ $\mathcal{L}(\text{weak CC}) = \frac{g}{\sqrt{2}} \left(J_{\mu}^{-} W^{\mu +} + J_{\mu}^{+} W^{\mu -} \right)$ $\mathcal{L}(\text{weak NC}) = \frac{g}{\cos \theta_{W}} \left(J_{\mu}^{3} - \sin^{2} \theta_{W} J_{\mu}^{\text{em}} \right) Z^{\mu}$ $\mathcal{L}(\text{em NC}) = e J_{\mu}^{\text{em}} A^{\mu}$

QCD: The gluon couples to the color charge of the quark. The strong potential for short interquark distances $(r \lesssim R_{\rm hadron} \simeq 1/\Lambda_{\rm QCD} \simeq 1 \text{ fm})$ is:

$$V_{\rm QCD} \simeq -\frac{4\,\alpha_s}{3\,r}\,,$$

where α_s is the strong coupling constants between quarks and gluons. At large distances (r > 1 fm), a confining term must be added to confine quarks inside hadrons.

Chiral Fermion States

Unification of the E&M and weak interactions: the former has a purely vectorial coupling $[\gamma_{\mu}]$ while the latter as a V - A character $[\gamma_{\mu}(1 - \gamma_5)]$. Let's absorb the $(1 - \gamma_5)$ in the definition of the spinors:

$$u_L(p) = \frac{(1 - \gamma_5)}{2} u(p)$$
 and $v_R(p) = \frac{(1 - \gamma_5)}{2} v(p)$

$$u_R(p) = \frac{(1+\gamma_5)}{2} u(p)$$
 and $v_L(p) = \frac{(1+\gamma_5)}{2} v(p)$

Here L =left-handed and R =right-handed. Thus:

Alain Bellerive

The Standard Model

Pure vectorial weak vertex ____

Conseqences:

$$u = \frac{(1 - \gamma_5)}{2}u + \frac{(1 + \gamma_5)}{2}u = u_L + u_R$$

and

$$\bar{u} = \bar{u}\frac{(1+\gamma_5)}{2} + \bar{u}\frac{(1-\gamma_5)}{2} = \bar{u}_L + \bar{u}_R$$

Plus,

$$\bar{u}_L \gamma_\mu u_R = \bar{u}_R \gamma_\mu u_L = 0$$

Thus the electromagntic current can be written as:

$$j^{em}_{\mu} = -\bar{e}\gamma_{\mu}e = -\bar{e}_L\gamma_{\mu}e_L - \bar{e}_R\gamma_{\mu}e_R$$

Define:
$$j^{\pm}_{\mu} = \bar{\chi}_L \gamma_{\mu} \sigma^{\pm} \chi_L$$
 with $\sigma^{\pm} = \frac{1}{2} (\sigma^1 \pm i \sigma^2)$:

$$ec{j}_{\mu} = rac{1}{2} ar{\chi}_L \gamma_\mu \, ec{\sigma} \, \chi_L \;\; ext{and} \;\; J^Y_\mu = 2 j^{em}_\mu - 2 j^3_\mu$$

with

$$\chi_{L}$$

$$\begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L} \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L} \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L}$$

$$\begin{pmatrix} u \\ d' \end{pmatrix}_{L} \begin{pmatrix} c \\ s' \end{pmatrix}_{L} \begin{pmatrix} t \\ b' \end{pmatrix}_{L}$$

$$SU(2)_{L} \otimes U(1)_{Y}$$
Unified electro-weak vertex:

$$-i \left[g_{w} \vec{j}_{\mu} \cdot \vec{W}^{\mu} + \frac{g'}{2} J_{\mu}^{Y} B^{\mu} \right]$$
with $W_{\mu}^{\pm} \equiv \frac{1}{\sqrt{2}} (W_{\mu}^{1} \mp i W_{\mu}^{2})$
 $\vec{j}_{\mu} \cdot \vec{W}^{\mu} = j_{\mu}^{1} W^{\mu 1} + j_{\mu}^{2} W^{\mu 2} + j_{\mu}^{3} W^{\mu 3}$
 $\vec{j}_{\mu} \cdot \vec{W}^{\mu} = \frac{1}{\sqrt{2}} j_{\mu}^{+} W^{\mu +} + \frac{1}{\sqrt{2}} j_{\mu}^{-} W^{\mu -} + j_{\mu}^{3} W^{\mu 3}$

such that

$$-\frac{ig_w}{\sqrt{2}}j_{\mu}^{\pm} = -\frac{ig_w}{2\sqrt{2}}[\bar{u}\gamma_{\mu}(1-\gamma_5)u]W^{\mu\pm}$$

The neutral underlying $SU(2)_L \otimes U(1)_Y$ allow the W^3 and the B to mix to the physical states called photon and the Z:

 $A_{\mu} = B_{\mu} \cos \theta_w + W_{\mu}^3 \sin \theta_w$ $Z_{\mu} = -B_{\mu} \sin \theta_w + W_{\mu}^3 \cos \theta_w$

and with $g_w \sin \theta_w = g' \cos \theta_w = g_e$ then

$$-i\left[g_w\,j_\mu^3\cdot W^{\mu3}+rac{g'}{2}J^Y_\mu B^\mu
ight]
onumber\ -ig_ej^{em}_\mu A^\mu-ig_z(j^3_\mu-\sin^2 heta_wj^{em}_\mu)Z^\mu$$

Weak Neutral Current

Knowing that $j_{\mu}^{em} = j_{\mu}^3 + \frac{1}{2}j_{\mu}^Y$ and $g_Z = \frac{g_e}{\sin \theta_w \cos \theta_w}$.

 $-ig_z \, (j^3_\mu - \sin^2 heta_w j^{em}_\mu) Z^\mu \qquad [Z^0 \, \, {
m weak \, current}]$

where within a particle doublet:

$$j_{\mu}^{em} = \sum_{i=1}^{2} Q_i (\bar{u}_{iL} \gamma_{\mu} u_{iL} + \bar{u}_{iR} \gamma_{\mu} u_{iR})$$

Then the $Z^0 \rightarrow f \bar{f}$ vertex factor depends on the particular quark and lepton (*i.e.* f) involved:

$$\frac{-ig_Z}{2}\gamma^{\mu}(c_V^f - c_A^f\gamma_5) \qquad [Z^0 \text{ vertex factor}]$$

with

f	c_V	c_A
$ u_\ell$	$\frac{1}{2}$	$\frac{1}{2}$
ℓ	$-\frac{1}{2} + 2\sin^2\theta_w$	$-\frac{1}{2}$
q	$\frac{1}{2} - \frac{4}{3}\sin^2 heta$	$\frac{1}{2}$
q'	$-\frac{1}{2}+\frac{2}{3}\sin^2 heta_w$	$-\frac{1}{2}$

Weinberg Angle

Reaction like the *pure* neutral reaction $u_{\mu} + e^- \rightarrow \nu_e + \mu^-$ were used to make the first measurement in 1973 of c_V^{ℓ} and c_A^{ℓ} and thus:

 $\sin^2 \theta_w = 0.22 \pm 0.03$

At SLC/LEP Z^0 bosons were produced copiously and it allowed a very precise determination of the properties Z. Using all experimental data:

 $\sin^2 \theta_w = 0.23147 \pm 0.00016$

Alain Bellerive

The Standard Model

Mass & Width of the Z Boson

Total Width (final LEP average June 2001) $\Gamma_{\rm Z} \equiv \Gamma({\rm Z} \rightarrow {X}) = 2.4952 \pm 0.0023 \text{ GeV}$

Hadronic Width

 $\Gamma(Z \rightarrow q\overline{q}) = 1.7442 \pm 0.0020 \text{ GeV}$

Leptonic Width

 $\Gamma(Z \to \ell^+ \ell^-) = 0.083991 \pm 0.000087 \text{ GeV}$

Such that

 $\Gamma_{\rm Z} = \Gamma({\rm Z} \to {\rm q}{\rm \overline{q}}) + 3\,\Gamma({\rm Z} \to \ell^+\ell^-) + {\rm invisible}$

Number of Neutrino Types

Invisible Width (calculated) $\Gamma(Z \rightarrow \nu_{\ell} \bar{\nu}_{\ell}) = 0.1666 \text{ GeV}$

$$\label{eq:Gamma-Lambda} \begin{split} \mathbf{Thus} \\ \Gamma_{\rm Z} &= \Gamma_{\rm q\overline{q}} + 3\,\Gamma_{\ell\bar{\ell}} + N_{\nu}\,\Gamma_{\nu\bar{\nu}} \end{split}$$

 $\label{eq:nonlinear} \begin{array}{l} \mbox{Implies} \\ N_{\nu} = 2.9841 \pm 0.0083 \end{array}$

Higgs Field

Physicists have theorized the existence of the so-called Higgs field, which in theory interacts with other particles to give them **mass**. The Higgs field requires a particle, the Higgs boson. The Higgs boson has not been observed, but physicists are looking for it with great enthusiasm.

Limit on the SM Higgs mass with data collected at LEP2 $\sqrt{s} = 161 - 210$ GeV:

$m_H > 113.5$ GeV (95% CL)

Spontaneous symmetry breaking:

The form of the Lagrangian that couples the Higgs field and the quarks is constrained by $SU(2)_L$ gauge invariance:

$$\mathcal{L} = \sum_{j,k} [Y_{jk}(\bar{u}_L^j, \bar{d}_L^j) \begin{pmatrix} \phi^0 \\ -\phi^+ \end{pmatrix}^* u_R^k + Y'_{jk}(\bar{u}_L^j, \bar{d}_L^j) \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} d_R^k]$$

where j and k run over quarks generations, L and R denotes left- and right-handed component, and Y_{jk} and Y'_{jk} are the Yukawa couplings. The complex Higgs doublet undergoes spontaneous symmetry breaking:

$$\left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \to \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v + H(x) \end{array}\right)$$

where v is the Higgs vacuum expectation and H(x) is the Higgs field corresponding to the Higgs boson.

$$\mathcal{L} = \sum_{j,k} [Y_{jk} \bar{u}_L^j u_R^k + Y'_{jk} \bar{d}_L^j d_R^k] \frac{1}{\sqrt{2}} [v + H(x)]$$

The term proportional to v generate the quark mass $m_{jk} \equiv \frac{-v}{\sqrt{2}} Y_{jk}$ and $m'_{jk} \equiv \frac{-v}{\sqrt{2}} Y'_{jk}$.

LHC: Large Hadron Collider ___

The LHC, in construction at CERN, is a proton-proton collider with $\sqrt{s} = 14 \text{ TeV}$. The SPS collider which discovered the W - Z bosons had $\sqrt{s} = 0.45 \text{ TeV}$ and the Tevatron collider at FermiLab has $\sqrt{s} = 1.8 \text{ TeV}$.

Higgs events at the LHC

LHC will take data in 2007 !!!

Alain Bellerive

The Standard Model

NLC: Next linear Collider

The Next Linear Collider (NLC) is proposed as the future generation of accelerator to probe matter. The design of the NLC is a 0.5 TeV e^+e^- collider to investigate the properties of the W - Z bosons, the top quark, and their couplings; and search for super-symmetric particles (SUSY).

Superconducting Acceleration Cavity

CKM Matrix

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
 [CKM Matrix]

such that

$$\left(\begin{array}{c}d'\\s'\\b'\end{array}\right) = \left(\begin{array}{ccc}V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c}d\\s\\b\end{array}\right)$$

The CKM matrix can be decomposed as:

	1 0 0	$0 \\ c_{23} \\ -s_{23}$	$\begin{array}{c} 0 \\ s_{23} \\ c_{23} \end{array}$	$\left(\begin{array}{c}c_{13}\\0\\-s_{13}\gamma\end{array}\right)$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$s_{13} egin{smallmed} & eta \\ & 0 \\ & c_{13} \end{array}$	$\begin{smallmatrix}c_{12}\\-s_{12}\\0\end{smallmatrix}$	${}^{s_{12}}_{{}^{c_{12}}_0}$)
×		20	20 /	(157		10			

where $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$, and i, j denote the quark generations. The middle matrix has incorporate the complex phase δ such that $\beta = e^{-i\delta}$ and $\gamma = e^{i\delta}$ to describe a rotation between quarks that are two generations apart. Multiplying these matrices:

1	c ₁₂ c ₁₃	^s 12 ^c 13	$s_{13}e^{-i\delta}$
	$-s_{12}c_{23} - c_{12}s_{23}s_{13}e_{15}^{io}$	$c_{12}c_{23} - s_{12}s_{23}s_{13}e^{io}$	$s_{23}c_{13}$
	$s_{12}s_{23} - c_{12}c_{23}s_{13}e^{io}$	$-c_{12}s_{23} - s_{12}c_{23}s_{13}e^{io}$	$c_{23}c_{13}$

Alain Bellerive

Wolfenstein Parameterization

Based on hierarchical we can expand in powers of the Cabibbo angle $\lambda = s_{12} = 0.22$, with $s_{23} = A\lambda^2$ and $s_{13}e^{-i\delta} = A\lambda^3(\rho - i\eta)$:

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Complex phase allow CP violation in the framework of Standard Model for a 3×3 CKM matrix

Or be neglecting the CP phase and the small $b \rightarrow u$ and $t \rightarrow d$ transitions:

$$V \simeq \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & 0 \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ 0 & -A\lambda^2 & 1 \end{pmatrix}$$

By neglecting the s_{23} we have the simple Cabbibo description $\theta_C \equiv \lambda$:

$$V \sim \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & 0\\ -\lambda & 1 - \frac{1}{2}\lambda^2 & 0\\ 0 & 0 & 1 \end{pmatrix} \simeq \begin{pmatrix} \cos\theta_C & \sin\theta_C & 0\\ -\sin\theta_C & \cos\theta_C & 0\\ 0 & 0 & 1 \end{pmatrix}$$

The Standard Model

B Factories

Time evolution of the B^0 system since the integration over time gives simply the mass difference and NOT the CP phase: Asymmetric B-factories [BaBar & Belle] operating at the $\Upsilon(4S)$ with luminosity $\sim 10^{34} cm^{-2} s^{-1}$ (PETRA in the 1980's had $\mathcal{L} \sim 10^{31} cm^{-2} s^{-1}$!!!).

Measure the angles of the unitary triangle

Alain Bellerive

Sudbury

Neutrino

Observatory

Alain Bellerive

The Standard Model

Construction Phase

Alain Bellerive

The Standard Model

Solar Neutrino Event

Cherenkov Light

When a particle travels through a medium such that its velocity v is greater than the velocity of light in the medium c/n, radiation is emitted. The radiation is confined to a **cone** around the direction of the incident particle.

SNO = Heavy Water Cherenkov Detector

Solar Neutrino Problem

The Solar Neutrino Problem

	BP SSM	Expt	Expt/BPSSM
Homestake	$9.3^{+1.2}_{-1.4}$ a)	$2.55 \pm 0.14 \pm 0.14$ a)	0.273 ± 0.021
Kamiokande Super-Kamiokande Combined	$6.62^{+0.93}_{-1.12}$ b)	$\begin{array}{c} 2.80 \pm 0.19 \pm 0.33 \\ 2.51 \substack{+0.14 \\ -0.13} \pm 0.18 \\ 2.586 \pm 0.195 \\ \mathrm{b} \end{array}$	0.423 ± 0.058 0.379 ± 0.029 0.391 ± 0.029
SAGE GALLEX Combined	137^{+8}_{-7} a)		$0.504 \pm 0.089 \\ 0.509 \pm 0.059 \\ 0.507 \pm 0.049$

Units a) SNU $(10^{-36}/s/tgt atom)$ b) $10^{6}/cm^{2}/s$

From Hata and Langacker, preprint 1997.

Alain Bellerive

Neutrino Oscillations

Neutrino Oscillations

For simplicity consider only two neutrino flavours, ν_e , ν_{μ}

• Suppose the flavour eigenstates, $|\nu_e\rangle$, $|\nu_{\mu}\rangle$ are not the mass eigenstates, $|\nu_1\rangle$, $|\nu_2\rangle$ Then the flavour eigenstates can be represented as a superposition of the mass eigenstates,

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\end{array}\right) = \left(\begin{array}{c}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right)$$

where θ is the mixing angle between the mass states.

The time evolution of the flavour states becomes,

$$\begin{aligned} |\nu_e\rangle_t &= \cos\theta e^{-iE_1t} |\nu_1\rangle + \sin\theta e^{-iE_2t} |\nu_2\rangle \\ |\nu_\mu\rangle_t &= -\sin\theta e^{-iE_1t} |\nu_1\rangle + \cos\theta e^{-iE_2t} |\nu_2\rangle \end{aligned}$$

Writing the time evolution in terms of the mass matrix gives,

$$i\frac{d}{dt}\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right) = \frac{1}{2}\left(\begin{array}{c}-\frac{\Delta m^{2}}{2E}\cos 2\theta & \frac{\Delta m^{2}}{2E}\sin^{2}\theta\\\frac{\Delta m^{2}}{2E}\sin^{2}\theta & \frac{\Delta m^{2}}{2E}\cos 2\theta\end{array}\right)\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right)$$

where E is the energy of the electron neutrino in MeV and

$$\Delta m^2 \equiv |m_2^2 - m_1^2|$$

• The survival probability of an electron neutrino after travelling a distance, L, is

$$P_e = 1 - \sin^2 2\theta \sin^2 \left[\pm \frac{1.27\Delta m^2 L}{E} \right]$$

• Furthermore, you can get an enhancement of flavour conversion in the sun due to the Mikheyev Smirnov Wofenstein (MSW) Effect

Deuterium Reactions

Detecting Neutrinos with Deuterium

Charged Current

Alain Bellerive

The Standard Model

neutrino

electron

SNO: First Results

$$\begin{split} \Phi_{CC}^{\rm SNO}: & \text{Sensitive to } \nu_e \text{ only!} \\ \Phi_{ES}^{\rm SK}: & \text{Sensitive to } \nu_e, \ \nu_\mu, \text{ and } \nu_\tau \\ & \text{Here } \Phi_{ES}^{\rm SK} = \Phi(\nu_e) + 0.154 \Phi(\nu_{\mu\tau}) \end{split}$$

 $\Phi(\nu_{\mu\tau}) \neq 0$ at the 3.3 standard deviation. \rightarrow First evidence of solar neutrino oscillation !!!

Next: measure CC/NC will provide an unambiguous statement on whether neutrinos oscillate on their way to the earth from the core of the sun.

Alain Bellerive

Summary ____

The open questions of particle physics:

- Weak flavor mixing in the quark and neutrino sectors.
- Search of the Higgs boson and new physics beyond the SM.

Elementary Particles 75-462 & 562:

- Constituents of matter
- Fundamental forces
- Conservation Laws
- Invariance Principles and Symmetries
- Relativistic Kinematics
- Quark Model
- QED and QCD
- Feynman Rules
- Electroweak interactions
- Open questions!

URL: http://www.physics.carleton.ca/~alainb/