Final

Elementary Particle Physics: PHYS 4602
Professor: Alain Bellerive
DEMO FINAL TEST 2012

1. Neutrinos

Enumerate the properties of the elementary particle called neutrinos. Give at least three (3) pieces of experimental evidence for the existence of the neutrinos - i.e. describe three direct or indirect experimental results accredited to the elusive neutrinos. (5 pts)

2. Conservation laws

The $\rho^{0}(770)$ and the $f^{0}(1274)$ mesons decay via the strong interaction to give $\pi^{+} \pi^{-}$pairs and have spin 1 and spin 2 , respectively.
(a) Show that a meson which decays to $\pi^{+} \pi^{-}$by the strong interaction must have $C=P=(-1)^{J}$, where J is the spin of the meson. (2 pts)
(b) Which of the decays $\rho^{0} \rightarrow \pi^{0} \gamma$ and $f^{0} \rightarrow \pi^{0} \gamma$ is forbidden to occur by an EM interaction? The photon has $J^{P C}=1^{--}$and the π^{0} has $J^{P C}=0^{-+}$. (2 pts)
(c) Which of the decays $\rho^{0} \rightarrow \pi^{0} \pi^{0}$ and $f^{0} \rightarrow \pi^{0} \pi^{0}$ is forbidden by ANY interaction? (2 pts)

3. $\Upsilon(4 S)$ meson production in $e^{+} e^{-}$collisions

(a) Explain why the dominant decay mode for the spin- $1 b \bar{b}$ resonance $\Upsilon(4 S)$ meson, which has a mass around 1058 MeV , is $\Upsilon(4 S) \rightarrow B \bar{B}$ and not $\Upsilon(4 S) \rightarrow$ light hadrons. (2 pts)
(b) Spin-1 $\Upsilon(4 S)$ mesons are produced in S-wave $(L=0)$ electronpositron collisions at $\sqrt{s} \simeq 10.58 \mathrm{GeV}$ via the electomagnetic process $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \Upsilon(4 S)$. What are the parity (P) and chargeconjugate (C) quantum numbers of the $\Upsilon(4 S)$? (4 pts)

4. Decay of the pion

A pion at rest decays into a lepton and a neutrino:

$$
\pi^{-} \rightarrow \ell^{-}+\bar{\nu}_{\ell}
$$

(a) Draw the Feynman diagram for this decay. (1 pt)
(b) Why ℓ can only be a muon (μ) or an electron (e) ? (1 pt)
(c) Find the energies of the outgoing particles in term of the various masses. (3 pts)
(d) Find the magnitudes of the outgoing momenta. (2 pts)
(e) Prove that the decay rate is given by the formula: (2 pts)

$$
\Gamma\left(\pi^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}\right)=\frac{S\left(m_{\pi}^{2}-m_{\ell}^{2}\right)}{16 \pi \hbar m_{\pi}^{3}}|\mathcal{M}|^{2}
$$

(f) Use the fact that the antineutrino is always right-handed to explain why $\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right) \gg \Gamma\left(\pi^{-} \rightarrow e^{-} \bar{\nu}_{e}\right)$. (3 pts)

5. Decay of the tau lepton and the b quark

(a) Estimate the ratio (3 pts)

$$
\frac{\Gamma\left(\tau^{-} \rightarrow K^{-}+\nu_{\tau}\right)}{\Gamma\left(\tau^{-} \rightarrow \pi^{-}+\nu_{\tau}\right)}
$$

where the kaon is $K^{-}=s \bar{u}$ and the pion is $\pi^{-}=d \bar{u}$.
(b) Find an expression for the lifetime of the bottom quark $\left(\tau_{b}\right)$ in term of the tau lifetime $\left(\tau_{\tau}\right)$, the tau mass $\left(m_{\tau}\right)$, the bare mass of the b quark $\left(m_{b}\right)$, and the relevant CKM matrix elements. Use the mass hierarchy $m_{b} \gg m_{s} \gg m_{d}$ and $m_{t} \gg m_{c} \gg m_{u}$ with $m_{u} \approx m_{d}$ and $m_{c} \approx m_{s}$. (3pts)

6. Baryon mass

The Σ^{0} and the Λ^{0} are both neutral octet baryons with quark content $u d s$ and strangeness -1 . Explain the difference of mass between the Σ^{0} and Λ^{0} baryons in term of quark pairings. You do not need to do any lengthy calculations for the size of the mass difference, but indicate all the assumptions used in the context of the static quark model. (5pts)

Leptons
$\binom{e^{-}}{\nu_{e}}\binom{\mu^{-}}{\nu_{\mu}}\binom{\tau^{-}}{\nu_{\tau}} \quad \begin{aligned} & Q=-1 \\ & Q=0\end{aligned}$
Quarks

$$
\binom{u}{d}\binom{c}{s}\binom{t}{b} \quad \begin{aligned}
& Q=+\frac{2}{3} \\
& Q=-\frac{1}{3}
\end{aligned}
$$

$\underline{\text { Quark Mixing Matrix }}$

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
0.975 & 0.221 & 0.004 \\
0.221 & 0.974 & 0.043 \\
0.004 & 0.043 & 0.999
\end{array}\right)
$$

Quark Model

$$
Q=I_{3}+Y / 2,
$$

where Q is the charge, I_{3} is the $3^{\text {rd }}$ isospin component, and $Y=B+S+C+\mathcal{B}+T$ is the hypercharge.

Meson and Baryon Mass Formula

$$
\begin{gathered}
M(\text { meson })=m_{1}+m_{2}+\mathcal{A} \frac{\vec{S}_{1} \cdot \vec{S}_{2}}{m_{1} m_{2}} \\
M(\text { baryon })=m_{1}+m_{2}+m_{3}+\mathcal{A}^{\prime}\left[\frac{\vec{S}_{1} \cdot \vec{S}_{2}}{m_{1} m_{2}}+\frac{\vec{S}_{1} \cdot \vec{S}_{3}}{m_{1} m_{3}}+\frac{\vec{S}_{2} \cdot \vec{S}_{3}}{m_{2} m_{3}}\right]
\end{gathered}
$$

Decay Rates and Cross-Sections

$$
\begin{gathered}
\Gamma[1 \rightarrow 2+3] \equiv \Gamma\left[1\left(m_{1} c, 0\right) \rightarrow 2\left(\frac{E_{2}}{c}, \vec{p}\right)+3\left(\frac{E_{3}}{c},-\vec{p}\right)\right]=\frac{S|\vec{p}|}{8 \pi \hbar m_{1}^{2} c}|\mathcal{M}|^{2} \\
\frac{d \sigma(1+2 \rightarrow 3+4)}{d \Omega}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|}
\end{gathered}
$$

Quantity	Weak	E\&M	Strong
Energy	yes	yes	yes
Charge	yes	yes	yes
Momentum	yes	yes	yes
Angular Momentum	yes	yes	yes
Baryon Number	yes	yes	yes
Lepton Number	yes	yes	yes
Isospin	no	no	yes
G-Parity	no	no	yes
Strangeness	no	yes	yes
P-Parity	no	yes	yes
C-Conjugate	no	yes	yes

Table 1: Conservation Laws.

Particle	L_{e}	L_{μ}	L_{τ}	Q_{ℓ}	P	Mass (MeV)
e^{-}	+1	0	0	-1	+1	0.511
μ^{-}	0	+1	0	-1	+1	105.66
τ^{-}	0	0	+1	-1	+1	1784
ν_{e}	+1	0	0	0	+1	0
ν_{μ}	0	+1	0	0	+1	0
ν_{τ}	0	0	+1	0	+1	0

Table 2: Quantum numbers for leptons: L_{ℓ} is the lepton number, Q_{ℓ} is the charge, and P is the P-parity. For antileptons $L_{\bar{\ell}}=-L_{\ell}, Q_{\bar{\ell}}=-Q_{\ell}$, and $P_{\bar{\ell}}=-P_{\ell}$.

Quark	I	I_{3}	Bare Mass (MeV)	Effective Mass (MeV)
u	$\frac{1}{2}$	$\frac{1}{2}$	1 to 5	310 to 365
d	$\frac{1}{2}$	$-\frac{1}{2}$	3 to 9	310 to 365
s	0	0	75 to 150	480 to 540
c	0	0	~ 1100	~ 1500
b	0	0	~ 4700	~ 4900
t	0	0	175000	no top bound states

Table 3: Bare Masses \& Effective Masses in hadrons and isospins for quarks.

Particle	Quark	Spin	B	S	I	I_{3}	P	Mass (MeV)
p	$u u d$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	$\frac{1}{2}$	+1	938
n	$u d d$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	+1	939
Δ^{++}	$u u u$	$\frac{3}{2}$	1	0	$\frac{3}{2}$	$\frac{3}{2}$	+1	1230
Λ^{0}	$u d s$	$\frac{1}{2}$	1	-1	0	0	+1	1115
Σ^{-}	$d d s$	$\frac{1}{2}$	1	-1	1	-1	+1	1197
Σ^{0}	$u d s$	$\frac{1}{2}$	1	-1	1	0	+1	1192
Σ^{+}	$u u s$	$\frac{1}{2}$	1	-1	1	+1	+1	1189
Ξ^{-}	$d s s$	$\frac{1}{2}$	1	-2	$\frac{1}{2}$	$-\frac{1}{2}$	+1	1321
Ξ^{0}	$u s s$	$\frac{1}{2}$	1	-2	$\frac{1}{2}$	$\frac{1}{2}$	+1	1314
Ω^{-}	$s s s$	$\frac{3}{2}$	1	-3	0	0	+1	1672
π^{+}	$u \bar{d}$	0	0	0	1	+1	-1	140
π^{0}	$u \bar{u}$ or $d \bar{d}$	0	0	0	1	0	-1	135
π^{-}	$\bar{u} d$	0	0	0	1	-1	-1	140
$\rho^{0}(770)$	$u \bar{u}$ or $d \bar{d}$	1	0	0	1	0	-1	770
$f^{0}(1274)$	$u \bar{u}$ or $d \bar{d}$	2	0	0	0	0	+1	1274
K^{+}	$u \bar{s}$	0	0	+1	$\frac{1}{2}$	$\frac{1}{2}$	-1	494
K^{-}	$\bar{u} s$	0	0	-1	$\frac{1}{2}$	$-\frac{1}{2}$	-1	494
\bar{K}^{0}	$\bar{d} s$	0	0	-1	$\frac{1}{2}$	$\frac{1}{2}$	-1	497
K^{0}	$d \bar{s}$	0	0	+1	$\frac{1}{2}$	$-\frac{1}{2}$	-1	497
B^{+}	$u \bar{b}$	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	-1	5279
B^{-}	$\bar{u} b$	0	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	-1	5279
\bar{B}^{0}	$\bar{d} b$	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	-1	5279
B^{0}	$d \bar{b}$	0	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	-1	5279

Table 4: Quantum numbers for baryons and mesons: B is the baryon number, S is the strangeness, I is the isospin, I_{3} is the $3^{\text {rd }}$ isospin component, P is the P-parity.

