Multiple Personality Neutrinos from the Sun

Alain Bellerive

Canada Research Chair in Particle Physics Carleton University

On behalf of the SNO Collaboration

Outline

- - Fundamental Forces of Nature
 - Standard Model of Elementary Particles
 - Tools: Particle Detectors
- Electroweak Reactions
- Solar Neutrino Physics
- Long Standing Solar Neutrino Problem/Solution
- Experimental Apparatus: SNO
- Results on Neutrino Oscillations
- Future of Particle Astrophysics in Canada
- Summary and Conclusion

Alain Bellerive, Carleton University

Where and How !?! Everybody in Physics at CUPC: • Fun – Curious – Passion Applied or Pure Experimental or Theoretical **Underground Science**: • Neutrinos – Dark Matter New Opportunities with SNOLAB Institutions: Carleton, Guelph, Laurentian, Queen's, TRIUMF, UBC, and Université de Montréal. High Energy Physics: BaBar - ATLAS - ZEUS – NLC - v Factory CERN-SLAC-Cornell-DESY-FNAL-BNL-KEK • • Institute of Particle Physics (IPP)

S

н

W

R

L

The First Piece:

- Fundamental Forces
- Standard Model
- Particle Detectors

Fundamental Forces

Gravity: Gravity governs the attraction between two massive objects. It is negligible at the subatomic scale.

Electromagnetic: Most of us are familiar with electric and magnetic phenomena.

Strong: In the Standard Model, hadrons (neutrons & protons) are considered to be made of quarks bound together by the strong force.

Weak: The weak interaction is more subtle! It is responsible for the instability of some nuclei via β -decay (*e.g.* n -> p e v).

Interaction	Particle	Range (m)	Coupling
EM	photon	infinity	10 ⁻²
Strong	gluon	10 ⁻¹⁵	1
Weak	W & Z	10 ⁻¹⁸	10 ⁻⁶

Elementary Particles

Fermions		Bosons	
Leptons and Quarks	Spin = $\frac{1}{2}$	Spin = 1*	Force Carrier Particles
Baryons (qqq)	Spin = $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$	Spin = 0, 1, 2	Mesons (qq̄)

Standard Model

The Standard Model provides a general description of the physics currently accessible with modern particle accelerators. The minimal Standard Model postulates that matter is composed of fundamental spin-1/2 quarks and spin-1/2 leptons interacting via spin-1 bosons.

Quarks and leptons can be sub-divided into familieswhich interact via the exchange of weak vector bosonsQuark SectorLepton Sector

+2/3
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

Q =

Q =

$$\begin{pmatrix} e \\ V_e \end{pmatrix} \begin{pmatrix} \mu \\ V_\mu \end{pmatrix} \begin{pmatrix} \tau \\ V_\tau \end{pmatrix} \qquad Q = -1$$

$$Q = 0$$

Electroweak Lagrangian: L = L(weak NC) + L (em NC) + L(weak CC) $L(em NC) = e J_{\mu}^{em} A^{\mu}$ $L(weak NC) = \frac{g}{\cos\theta_{W}} (J_{\mu}^{0} + \sin^{2}\theta_{W} J_{\mu}^{em}) Z^{\mu}$ $L(weak CC) = \frac{g}{\sqrt{2}} (J_{\mu}^{+} W^{\mu-} + J_{\mu}^{-} W^{\mu+})$ **Open Questions in Particle Physics**

In the theoretical framework of the Standard Model, there are presently two fundamental open questions at the forefront of particle physics

1) The first inquires about the origin of mass generated in the electroweak sector via the <u>Higgs mechanism</u>.

2) The other deals with the origin of <u>quark</u> <u>& neutrino mixing</u>, and CP violation.

Tools to study subatomic particles $\Delta x \Delta p \approx \hbar$

1) Multipurpose detectors operating at high energy accelerators *e.g.* BaBar - ATLAS

2) Underground laboratories: e.g. Sudbury

The Second Piece:

Electroweak Reactions

Electroweak Interactions

Electroweak Reactions $n \rightarrow p e^{-} \overline{v_e}$

1) The neutron (charge = 0) is made of up, down, down quarks.

2) One of the down quarks is transformed into an up type quark....

Since the down quark has a charge of -1/3 and and the up quark has a charge of 2/3, it follows that this process is mediated by a **virtual** W⁻ particle. 3) The new up quark rebounds away from the emitted W⁻. The neutron now has become a proton.

In this decay the W⁻ particle, which carries away a (-1) charge; thus charge is conserved!

4) An electron and antineutrino emerge from the virtual W- boson.5) The proton, electron, and the antineutrino move away from one another.

Quark Mixing (CKM)

- Define a quark mixing matrix which relates the mass and weak eigenstates
- In the minimal Standard Model CP violation in the quark sector is built in the CKM matrix since the elements of V are complex

Quark Mixing Matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

$$V_{ij} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Neutrino Mixing

- Just as in the quark sector, it is possible to define a neutrino mixing matrix which relates the mass and weak eigenstates
- In the minimal Standard Model there is no mixing...

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Neutrino Oscillations

Time Evolution $i \frac{d}{dt} \begin{pmatrix} V_e \\ V_\mu \end{pmatrix} = \frac{1}{2} T \begin{pmatrix} V_e \\ V_\mu \end{pmatrix}$ $T = \begin{pmatrix} -\frac{\Delta m^2}{2E} \cos 2\theta & \frac{\Delta m^2}{2E} \sin^2 \theta \\ \frac{\Delta m^2}{2E} \sin^2 \theta & \frac{\Delta m^2}{2E} \cos 2\theta \end{pmatrix} \begin{pmatrix} V_e \\ V_\mu \end{pmatrix}$ $T = \begin{pmatrix} -\frac{\Delta m^2}{2E} \cos 2\theta & \frac{\Delta m^2}{2E} \sin^2 \theta \\ \frac{\Delta m^2}{2E} \sin^2 \theta & \frac{\Delta m^2}{2E} \cos 2\theta \end{pmatrix}$ Neutrino Oscillations:

$$\Delta m^2 = \left| m_2^2 - m_1^2 \right|$$

 $P_{ee} \sim sin^2(2\theta) sin^2(1.27 \Delta m^2 L / E)$

- Physics:
 Δm² & sin(2θ)
- Experiment: Distance (L) & Energy (E)

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

The state evolve with time or distance

Arranging the Pieces:

Solar Neutrino Physics

The Nobel Prize in Physics 2002

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

Raymond Davis Jr.

Masatoshi Koshiba

"for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources"

Riccardo Giacconi

The work of Davis and Koshiba has led to unexpected discoveries and a new, intensive field of research, *neutrino-astronomy*. Giacconi constructed the first X-ray telescopes, which have provided us with completely new – and sharp – images of the universe.

Neutrino Production in the Sun

Neutrino from the Sun

- Our sun emits around 2 x 10⁺³⁸ neutrinos per second.
- The earth receives more than 100 billions neutrinos per second and cm². This huge raining is undetected by the five senses of the homo sapiens.

Neutrino Detectors

 Underground, undersea or under ice, the experimental apparatus detect either the Cerenkov light emitted when a neutrino interact with the water or the transformation of atoms under neutrino interaction.

Strategy

- Deep and clean = low background.
- HUGE = Neutrino have small probability of interacting!

Using solar vs' to probe the Sun

1946 Pontecorvo, 1949 Alvarez

 $^{37}Cl + v_e \rightarrow ^{37}Ar + e^{-1}$

1960's Ray Davis, builds Chlorine detector

John Bahcall, generates SSM & v flux predictions

"...to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars..."

Gallium Measurements $^{71}Ga + v_e \rightarrow ^{71}Ge + e^{-}$

Two independent experiments SAGE Data/SSM = 0.55 ± 0.05 GALLEX Data/SSM = 0.57 ± 0.05

Latest SAGE results (astro-ph/0204245)

Both Expts Performed v source tests

$$^{51}\text{Cr} + e^{-} \rightarrow {}^{51}\text{V} + v_e$$

SAGE Source Test R(σ_{mea}/σ_{th})=0.95±.12±.03

∫ v flux <u>~ 6</u>.5 • 10¹⁰/cm²/s

Neutrino Energy (MeV)

Experiment	Year	Detection Reaction	Ratio Exp/BP2000
Chlorine (127 t)	1970- 1995	$^{37}\text{Cl} + \nu_e \rightarrow \ ^{37}\text{Ar} + e^{-1}$	0.34 ± 0.03
Kamiokande (680t)	1986- 1995	$v_{x} + e^{-} \rightarrow v_{x} + e^{-}$	0.54 ± 0.08
SAGE (23 t)	1990-	$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^{-}$	0.55 ± 0.05
Gallex + GNO (12 t)	1991-	$^{71}\text{Ga} + \nu_e \rightarrow \ ^{71}\text{Ge} + e^{-1}$	0.57 ± 0.05
SuperK (22kt)	1996-	$\nu_x + e^- \rightarrow \nu_x + e^-$	0.451 +0.017 -0.015

Astrophysical Solutions?

The data are incompatible with the Standard Solar Model !!!

Look at Δm^2 versus sin²2 θ

Data give a dramatic extension of oscillation sensitivity to very large values of Δm^2

Solar v data are not consistent with vacuum oscillations between the sun and the earth! But only circumstantial evidence

- Need definitive proof
- Appearance measurement
- Independent of SSM

Beyond the Standard Model - v mass & mixing

Vacuum Oscillations

If neutrinos have mass then the lepton mixing matrix (MNSP) is expressed as

 $\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

and flavor eigenstates are a mixture of mass eigenstates.

Then

 $v_e = U_{e1}v_1 + U_{e2}v_2 + U_{e3}v_3$

and the state evolves with time or distance

 $v_e = U_{e1}e^{-iE_1t}v_1 + U_{e2}e^{-iE_2t}v_2 + U_{e3}e^{-iE_3t}v_3$

where $E_i^2 = p^2 + m_i^2$

(See B. Kayser hep-ph/0104147 for a nice introduction)

Matter Enhanced Oscillations (MSW)

Neutrinos in matter can acquire an effective mass through scattering.

Normal matter contains many electrons, but no muons or taus, so v_e can undergo both CC and NC scattering.

MSW Oscillations are dependent on the v energy and the density of the material, hence one can observe spectral energy distortions.

Matter-Enhanced Neutrino Oscillations in the Sun

Neutrinos produced in weak state ν_{e}

 \Rightarrow Superposition of mass states $v_{1, 2, 3}$

→ Superposition of mass states changes through the MSW resonance effect → Solar neutrino flux detected on Earth consists of $v_e + v_{\mu,\tau}$

Sensitivity to v oscillations Vacuum Oscillations MS

 Different types of experiments sensitive to different aspects of oscillation space

MSW Oscillations

 For v's in matter can acquire an effective mass through scattering, enhancing oscillations.

Somewhere in the Depths of Canada...

Sudbury Neutrino Observatory

2092 m to Surface (6010 m w.e.)

PMT Support Structure, 17.8 m 9456 20 cm PMTs ~55% coverage within 7 m

Acrylic Vessel, 12 m diameter

1000 tonnes D₂O 1700 tonnes H₂O, Inner Shield

5300 tonnes H₂O, Outer Shield Urylon Liner and Radon Seal

Solar Neutrino Events in SNO

SNO Heavy Water Cherenkov Detector

Cherenkov Light

When a particle travels through a medium such that its velocity *v* is greater that the velocity of light in the medium *c/n*, radiation is emitted. The radiation is confined to a **CONE** around the direction of the incident particle.

The SNO detector observes the following interactions:

ν Reactions in SNO

$$(cc) v_e + d \Rightarrow p + p + e^{-1}$$

-Good measurement of ν_e energy spectrum -Weak directional sensitivity \propto 1-1/3cos(θ) - ν_e only.

NC
$$v_x + d \Rightarrow p + n + v_x$$

- Measure total ⁸B ν flux from the sun.

- Equal cross section for all ν types

Danger !

A 2.2 MeV photon can break the deuterium and mimic a NC event

-Low Statistics -Mainly sensitive to $\nu_{e,}$, some sensitivity to ν_{μ} and ν_{τ} -Strong directional sensitivity

An Ultraclean Environment

 Highly sensitive to any γ above neutral current (2.2 MeV) threshold.

2.615 MeV γ

 Sensitive to ²³⁸U and ²³²Th decay chains

Measuring U/Th Content

Purification System

- Clean D₂O and H₂O to pristine condition
- Monitor the water on-line

Background Measurement

- Ion exchange (²²⁴Ra, ²²⁶Ra)
- Membrane Degassing (²²²Rn)

 $\begin{array}{c|c} D_2O & H_2O/AV \\ \hline Neutron \\ Events & 44^{+8}_{-9} & 27^{+8}_{-8} \end{array}$

The SNO Detector during Construction

SNO observables - event by event PMT Information: Positions, Charges, Times

Event Reconstruction Vertex, Direction, Energy, Isotropy

ν Reactions in SNO

$$(cc) v_e + d \Rightarrow p + p + e^{-1}$$

-Good measurement of ν_e energy spectrum -Weak directional sensitivity \propto 1-1/3cos(θ) - ν_e only.

NC
$$v_x + d \Rightarrow p + n + v_y$$

- Measure total ⁸B ν flux from the sun.

- Equal cross section for all v types
- 2.2 MeV Threshold, Integrated E > E_{th}

Produces Cherenkov Light Cone in D₂O

D₂O Only Phase

n captures on deuteron 2 H(n, γ) 3 H Observe 6.25 MeV γ

ES $\overline{v_x} + e^- \implies v_x + e^-$

Produces Cherenkov Light Cone in D₂O

- -Low Statistics
- -Mainly sensitive to v_{e} , some sensitivity to v_{μ} and v_{τ}
- -Strong directional sensitivity

Extraction of CC, ES, NC Signals

To extract the CC, ES, NC signal SNO performs a Maxlikelihood statistical separation of these signals based on distributions of the SNO observables.

Data Analysis:

Mutivariate Likelihood Fit

Global View: SNO Results

Shape Constrained Signal Extraction Results

Shape Constrained Neutrino Fluxes Signal Extraction in Φ_{CC} , Φ_{NC} , Φ_{ES} . $E_{Theshold} > 5 MeV$ $\Phi_{cc}(v_e) = 1.76^{+0.06}_{-0.05} (stat.)^{+0.09}_{-0.09} (syst.) x10^6 cm^{-2}s^{-1}$ $\Phi_{es}(v_x) = 2.39^{+0.24}_{-0.23}$ (stat.) $^{+0.12}_{-0.12}$ (syst.) x10⁶ cm⁻²s⁻¹ $\Phi_{nc}(v_x) = 5.09^{+0.44}_{-0.43} (stat.)^{+0.46}_{-0.43} (syst.) x10^6 cm^{-2}s^{-1}$ Signal Extraction in $\Phi_{e}, \Phi_{u\tau}$. $\Phi_{e} = 1.76^{+0.05}_{-0.05}$ (stat.) $^{+0.09}_{-0.09}$ (syst.) x10⁶ cm⁻²s⁻¹ $\Phi_{\mu\tau} = 3.41^{+0.45}_{-0.45}$ (stat.) $^{+0.48}_{-0.45}$ (syst.) x10⁶ cm⁻²s⁻¹

The Solar Neutrino Problem

SNO CC vs NC implies flavor change, which can then explain other experimental results.

SNO NC in D₂O Conclusions

~ 2/3 of initial solar v_e are observed at SNO to be $v_{\mu,\tau}$

Physics Interpretation v Oscillations

Combining All Experimental and Solar Model information

SNO - Current Status and Future Plans

The Salt PhaseNeutral Current Detectors $n + {}^{35}Cl \rightarrow {}^{36}Cl + \Sigma\gamma \dots \rightarrow e^- (E_{\Sigma\gamma} = 8.6 \text{ MeV})$ $n + {}^{3}He \rightarrow p + t$

- Higher n-capture efficiency
- Higher event light output
- Event isotropy differs from e⁻
- Running since June 2001
- Opportunities for graduate studies and coop projects

Event by event separation

Future Prospects for SNOLAB CFI International Venture: 39 millions for new cavern at the 6800 ft level !!! Sudbury, Canada Going

Going Underground... • Search for DARK MATTER

 SNO' with wavelength shifters to measure to B⁸ spectrum (LMA vs LOW)

New neutrino experiments

Intensive field of research

SNO Conclusions

- First NC Flux measurements yield clear evidence that the majority of ν_e produced in the Sun are transformed to ν_μ and/or ν_τ

- Null hypothesis "No Weak Flavor Mixing" ruled out at 5.3 σ
- Lowest Detection threshold yet for a real-time solar $\boldsymbol{\nu}$ detector
- Total ⁸B flux measurement agrees well with Solar Models
- Data in good agreement with previous SNO SK CC/ES results

Enhanced NC measurement, with NaCl underway since June 2001

Need to confirmed solar neutrino oscillation with salt data (underway)

Measure the energy spectrum of v_e and possible energy distortion

Rule out LOW and study day/night asymmetry and season variation

NOT OVER: SNOLAB provides new opportunities for underground science and particle astrophysics in Canada

http://www.physics.carleton.ca/~alainb/ http://www.ocip.carleton.ca

Broader Implications

Solar neutrinos and Atmospheric neutrinos demonstrate that neutrinos have mass and the Standard Model of Nuclear and Particle Physics is incomplete.

- Unlike the Quark Sector where the CKM mixing angles are small, the lepton sector exhibits large mixing
- The v masses and mixing may play significant roles in determining structure formation in the early universe as well as supernovae dynamics and the creation of the elements

The coming decade should be an exciting time for neutrino physics helping delineate the "New" Standard Model that will include neutrino masses and mixing.

- Precision measurements of the leptonic mixing matrix
- Determination of Neutrino mass
- Investigation of lepton sector CP and CPT properties

Sources of Calibration

- Use detailed Monte Carlo to simulate events
- Check simulation with large number of calibrations:

Calibration	Simulates		
Pulsed Laser	337-620 nm optics		
¹⁶ N	6.13 MeV γ's		
³ H(p,γ) ⁴ He	19.8 MeV γ's		
⁸ Li	<13.0 MeV β's		
²⁵² Cf	neutrons		
U/Th	²¹⁴ Bi & ²⁰⁸ Tl β-γ's		

Energy Calibration

- Track energy response both in position and throughout the livetime of the detector
- Use ¹⁶N , ⁸Li, and (p,t) sources to calibrate across different energies and positions across the detector
- Energy uncertainty: ±1.21%

Data vs Monte Carlo

Cherenkov Background

Fit to Cherenkov backgrounds above 4.5 MeV outside fiducial volume

 \rightarrow Extrapolate into fiducial volume

What About Neutrino Mass?

