

From SNO to SNOLAB

Alain Bellerive Canada Research Chair Carleton University, Ottawa, Canada

On behalf of the SNO Collaboration

The 10th ICATPP Conference Villa Como, 8-12 October, 2007

Outline

- Introduction Solar Neutrinos
- Sudbury Neutrino Observatory (SNO)
- Results and prospect SNO Phases I (pure D_2O) SNO Phase II (salt) SNO Phase III (NCD) SNOLAB Low energy solar neutrinos (SNO+) Dark Matter (Picasso & DEAP)
 - Double beta decay (EXO)
- Summary and Conclusion
 ABellerive: Villa como. Oct. 2007

- Laurentian University
- Queen's University
- TRIUMF Laboratory
- University of British Columbia
- University of Guelph
- Oxford University

- Brookhaven National Laboratory
- Lawrence Berkeley National Laboratory
- Los Alamos National Laboratory
- University of Pennsylvania
- University of Texas at Austin
- University of Washington
- Massachusetts Institute of Technology
- LIP, Lisbon, Portugal

A.Bellerive: Villa como, Oct. 2007

Solar Neutrinos

1018

1011

1010

10 ⁹

10 8

10 7

10 *

10 5

10 4

10 ³

10 ²

10 I 0.1

0.3

Neutrino Flux

3

10

1

Neutrino Energy (MeV)

Solar Neutrino Problem (SNP)

Measured *≠* predicted

Neutrino reactions	Experiment	Medium	Threshold	Measured/SSM
$\nu_e + {}^{37}\text{Cl} \rightarrow e^- + {}^{37}\text{Ar}$			(MeV)	
	Homestake	Cl	0.814	[CC]=0.34±0.03
$\nu_e + {}^{71}\text{Ga} \rightarrow e^- + {}^{71}\text{Ge}$	SAGE+GALLEX/GNO	Ga	0.2332	[CC]=0.52±0.03
$\nu_1 + e^- \rightarrow \nu_1 + e^-$	SuperK	H ₂ O	7.0	[ES]=0.406±0.013
$\nu_l + \psi_l + \psi_l + \psi_l$				

arXiv:hep-ph/0406294

The SNO Detector

View from the bottom of the SNO acrylic vessel and PMT array with a fish-eye lens

View of the SNO detector

A.Bellerive: Villa como, Oct. 2007

S	Three methods to detect the neutrons from the NC reaction in SNO NC $v_x + d \rightarrow v_x + P + n$				
	Phase I (D ₂ O) Nov. 99 - May 01		Phase II (Salt+D ₂ O) July 01 - Sep. 03	Phase III (³ He+D ₂ O) Nov. 04 - Nov. 06	
	n captures on Deuterium ${}^{2}H(n,\gamma){}^{3}H$ $\sigma = 0.0005b$ $6.25 \text{ MeV single } \gamma$ PMT array readout		2t NaCl added n captures on Chlorine ${}^{35}Cl(n,\gamma){}^{36}Cl$ $\sigma = 44b$ 8.6 MeV multiple γ s PMT array readout	n captures on ³ He counters ³ He(n, γ) ³ H σ = 5330b 0.764 MeV(p, ³ H) Independent readout Event by event separation	
	n γ $3H^*$ 3H		n $3^{6}Cl^{*}$ $3^{6}Cl^{*}$ A.Bellerive: Villa como, Oct. 2007	$\begin{array}{c} \overleftarrow{} 5 \text{ cm} \xrightarrow{} n \\ \overbrace{} 5 \text{ cm} \xrightarrow{} n \\ \overbrace{} 3 \text{ He} \xrightarrow{} p \\ 3 \text{ He} \xrightarrow{} p \\ 3 \text{ He} \xrightarrow{} 8 \\ n + ^{3}\text{ He} \rightarrow p + ^{3}\text{ H} \end{array}$	

Total of ~1100 live days

Calibration of SNO detector

Phys. Rev. C 72, 055502 (2005)

Calibration source	Details	Calibration
Pulsed nitrogen laser	337, 369, 385,	Optical &
	420, 505, 619 nm	timing calibration
¹⁶ N	6.13-MeV γ -rays	Energy & reconstruction
⁸ Li	β spectrum	Energy & reconstruction
²⁵² Cf	neutrons	Neutron response
Am-Be	neutrons	Neutron response
³ H(p, γ) ⁴ He ("pT")	19.8-MeV γ-rays	Energy linearity
U, Th	$\beta - \gamma$	Backgrounds
⁸⁸ Y	$\beta - \gamma$	Backgrounds
Dissolved Rn spike	$\beta - \gamma$	Backgrounds
In-situ ²⁴ Na activation	$\beta - \gamma$	Backgrounds

Neutrino detection

- Mostly sensitive to v_e , some v_u, v_τ

Neutrino reactions in SNO detector

- Strong directional sensitivity

ES

$$v_e + d \rightarrow p + p + e^{-1}$$

-Q = 1.44 MeV
-Measure v_energy sr

 $\nu_{x} + e^{-} \rightarrow \nu_{x} + e^{-}$

-Measure v_e energy spectrum -Sensitive to v_e only

$$v_x + d \rightarrow v_x + p + n$$

- Q = 2.22 MeV
- Equally sensitive to 3 active v flavors
- Measures total $^{8}B \nu$ flux (SNO only)

Key signatures for v oscillations of SNO

flavor change?

$$\frac{\Phi_{CC}}{\Phi_{ES}} = \frac{\nu_e}{\nu_e + 0.154(\nu_\mu + \nu_\tau)}$$

ES:

- Strong directional sensitivity, θ_{sun}
- Super-K precision measurement

$$\frac{\Phi_{CC}}{\Phi_{NC}} = \frac{\nu_e}{\nu_e + \nu_\mu + \nu_\tau}$$

NC:

- Equally sensitive to 3 flavors
- Cross section uncertainties cancel

 Φ_{day}

Neutrino Signal Extraction from PMT Data

Energy Distribution

Radial Distribution (R³, R_{AV}=1)

> Solar Direction Distribution

Maximum likelihood

statistical separation of the signals (PMT data).

The energy (top row), radial (middle row), and directional (bottom row) distributions used to build pdfs to fit the SNO signal data D2O A.Bellerive: Villa como, Oct. 2007

Phase

Results of the SNO Experiment

Phase I

Pure D_2O

Nov. 1999 - May 2001

Shape Constrained Neutrino Fluxes (D₂O) Signal Extraction in Φ_{CC} , Φ_{NC} , Φ_{ES} with $E_{Theshold} > 5 MeV$ $\Phi_{cc}(v_e) = 1.76^{+0.06}_{-0.05} (stat.)^{+0.09}_{-0.09} (syst.) x10^{6} cm^{-2}s^{-1}$ $\Phi_{es}(v_x) = 2.39^{+0.24}_{-0.23}$ (stat.) $^{+0.12}_{-0.12}$ (syst.) x10⁶ cm⁻²s⁻¹ $\Phi_{nc}(v_x) = 5.09^{+0.44}_{-0.43} (stat.)^{+0.46}_{-0.43} (syst.) x10^6 cm^{-2}s^{-1}$ Signal Extraction in $\Phi_{e}, \Phi_{\mu\tau}$ $\Phi_{e} = 1.76^{+0.05}_{-0.05} \text{ (stat.)}^{+0.09}_{-0.09} \text{ (syst.) x10}^{6} \text{ cm}^{-2}\text{s}^{-1}$

 $\Phi_{\mu\tau}$ = 3.41^{+0.45}_{-0.45} (stat.) ^{+0.48}_{-0.45} (syst.) x10⁶ cm⁻²s⁻¹

Phase II

2 tons NaCl added in D₂O

July 2001 - Sep. 2003

A.Bellerive: Villa como, Oct. 2007

Phase II (SALT)

Phys. Rev. C 72, 055502 (2005)

2 tons NaCl added into the D2O

- Higher neutron capture cross section
- Higher energy release (totally 8.6MeV)
- Multiple gammas (averagely 2.5γs)

 $\sigma = 44 \text{ b}$

Advantages of Salt: more sensitive

- Neutrons capturing on ³⁵Cl provide higher neutron energy above threshold.
- Higher capture efficiency
- Gamma cascade changes the angular profile.

[similar to thrust in collider physics]

CC/ES events

Charged Current (CC= v_e) Spectrum

A.Bellerive: Villa como, Oct. 2007

Salt results & comparison to SSM

More precise salt results confirm D₂O results

ß

SNO Phase I & II (D_2O & salt)

Oscillation analysis

SNO-only neutrino oscillation analysis, including pure D2O and salt phase dataset.

The ⁸B flux was free in the fit; hep solar neutrinos were fixed at 9.3×10^3 cm⁻² s⁻¹.

Oscillation analysis	$\Delta m^2 \ (10^{-5} \ {\rm eV}^2)$	$\tan^2 \theta$
SNO-only	$5.0^{+6.2}_{-1.8}$	$0.45^{+0.11}_{-0.10}$
Global solar	$6.5^{+4.4}_{-2.3}$	$0.45^{+0.09}_{-0.08}$
Solar plus KamLAND	$8.0^{+0.6}_{-0.4}$	$0.45_{-0.07}^{+0.09}$

•Contains Cl, Sage, Gallex/GNO and SK-1 zenith data •8B flux free in fit, hep flux fixed to $9:3 \times 10^3$ cm⁻¹s⁻¹

Astrophys.J. 653 (2006) 1545-1551

SNO hep and DSNB v analysis

DSNB: Diffuse Supernova Neutrinos

 \rightarrow Both signals lie in the region between ⁸B solar neutrinos and atmospheric neutrinos

→Search by counting number of events within a predefined energy window or signal box ...

hep neutrinos

• Dominant background is ⁸B solar neutrinos • Normalize with low-energy fit with account for neutrino oscillations ($6 < T_{eff} < 12 \text{ MeV}$)

DSNB neutrinos

 Dominant background is atmospheric neutrinos

• Signal region 21 $< T_{eff} < 35 \text{ MeV}$

Pure D2O dataset

Astrophys.J. 653 (2006) 1545-1551

27

SNO hep and DSNB v analysis

Pure D2O dataset

hep neutrinos

- 2 events in signal box
- consistent with expected backgrounds
- Φ_{hep} < 2.3 x 10⁴ cm⁻²
 - 90% confidence level upper
 - 2.9 times SSM prediction
 - 6.5 times better than SK limit

DSNB neutrinos

- 0 events in signal box
- 0.18 background events expected
- Φ_{DSNB} < 70 cm⁻² for 22.9<E_v<36.9 MeV
 - 90% confidence level upper limit
 - average of 5 models
 - 10² better than previous MB limit

Periodicity Analysis of SNO Data

A periodicity analysis on the D₂O and salt data sets was performed using both a Lomb-Scargle periodogram and an unbinned maximum likelihood fit (PRD 72 052010, 2005)

For the combined data sets, the largest peak occurs at a period of 2.4 days, with a statistical significance of S=8.8

Monte Carlo shows that 35% of simulated data sets give a peak at least this large

No statistically significant periodicity was found

Phys. Rev. D 72, 052010 (2005)

Phase III

³He Proportional Counters

Nov. 2004 - Nov. 2006:

SNO Phase III (³He Proportional Counters)

³He Proportional Counters ("NC Detectors")

Detection Principle

²H +
$$\nu_x \rightarrow p + n + \nu_x - 2.22 \text{ MeV}$$
 (NC)
³He + n $\rightarrow p + {}^{3}\text{H} + 0.76 \text{ MeV}$

40 Strings on 1-m grid 398 m total active length

Physics Motivation

Event-by-event separation. Measure NC and CC in separate data streams.

Different systematic uncertainties than neutron capture on NaCl.

	D ₂ O unconstrained	D ₂ O constrained	Salt unconstrained	³ He
NC,CC	-0.950	-0.520	-0.521	~0
CC,ES	-0.208	-0.162	-0.156	~-0.2
ES,NC	-0.297	-0.105	-0.064	~0

Correlation Coefficients between the CC, ES, and NC events

SNO Phase III (³He Proportional Counters)

The positions of the NCD strings projected onto the plane of the AV equator

36 ³He Strings and 4 ⁴He strings for determination of α background

NIM A 579 (2007) 1054-1080

A.Bellerive: Villa como, Oct. 2007

NIM A 579 (2007) 1054–1080

A.Bellerive: Villa como, Oct. 2007

- Proportional counters detect neutrons via: n + ³He \rightarrow p + ³H
- Low radioactivity CVD nickel, 5 cm diameter, 0.36 mm thick
- Gas is 85% ³He and 15% CF₄, at \sim 2.5 atm
- Anchored to the bottom of SNO on a 1-meter square grid
- 40 strings, each 9 to 11 meters long, 398 meters total length
- 50 μ m copper anode wire at 1950 V

34

Neutron Capture in the NCDs

~ 1200 n captures per year in NCDs from solar v n + ${}^{3}\text{He} \rightarrow p$ + ${}^{3}\text{H}$ (Q = 764 keV)

End view of an NCD with representative ionization tracks.

Idealized energy spectrum in a ³He proportional counter.

A.Bellerive: Villa como, Oct. 2007

NIM A 579 (2007) 1054–1080

SNO Phase III (³He Proportional Counters)

A.Bellerive: Villa como, Oct. 2007

SNO Sensitivity

Future Ratio CC/NC

Day-night

Combination of information from three phases!

Summary

What we have:

- ⁸B neutrino results from first two phases, including fluxes, spectrum, D/N asymmetry
- search for periodicity in data
- hep and diffuse SN neutrino results

What is next:

- First results from NCD phase
- Low energy threshold analysis for phase I and II
- muon and atmospheric analysis
- other results
- COMBINATION OF ALL THREE PHASES !

Surface Facility

Underground Laboratory

2km overburden (6000mwe)

Fraser Duncan SNOLAB Workshop August 2007

Villa Como October 2007

Phase I

Existing SNO Facility

- -Lab Entry
- -Personnel Facilities

Utility Area

- Chiller
- Generator

Phase I

* Excavation began
Fall 2004, completed
May 2007
* Outfitting began June
2007

Existing SNO Facility

Phase II

* Funding announced yesterday.

Utility Area

- Chiller
- Generator

- Relocate
- -Lab Entry
- -Personnel Facilities

Laboratory Space

	Excavation Area	Volume	Clean Rm Area	Volume	Laboratory Area	Volume
Existing	20,049 ft² 1,863 m²	582,993 ft³ 16,511 m³	12,196 ft² 1,133 m²	470,360 ft ³ 13,321 m ³	8,095 ft² 752 m²	412,390 ft³ 11,679 m³
Existing + Phase I	65,340 ft² 6,072 m²	1,367,488 ft ³ 38,728 m ³	41,955 ft² 3,899 m²	1,049,393 ft ³ 29,719 m ³	26,117 ft² 2,427 m²	837,604 ft³ 23,721 m³
Existing	77,636 ft²	1,647,134 ft ³	53,180 ft²	1,314,973 ft ³	32,877 ft ²	1,043,579 ft ³
+ Phase I&II	7,215 m ²	46,648 m ³	4,942 m ²	37,241 m³	3,055 m²	29,555 m³
					1	

CLASS 2000 Clean Room Laboratory Space

Excavation Status: August 2006

Excavation Status: August 2006

Excavation Status: August 2006

Ladder Labs

Excavation Status: Today

September 2007

- Phase I excavation complete
- Phase I outfitting underway
- Phase II excavation underway

Phase II

Cryopit

SNO

SNOLAB

- Ended data taking 28 Nov 2006
- Most heavy water returned June 2007
- Finish decommissioning end of 2007

Surface Facilities

- Site: 4,700 ft² CLASS 1000 Clean Room Laboratories, IT Infrastructure (high speed off site), Office, Meeting Rms, Control Rms, Material handling.
- Laurentian Water Facility: Intended for spike work not appropriate for site. Will have Ultra Pure Water facility, Low BG counting

Material Screening

Ge Gamma Counter

Low Background Counting available for the experiments.

- 1 liter sample sizes
- Presently being used by SNO, EXO, DEAP/CLEAN, PICASSO

Material Screening

ESC (Electrostatic Counter)

- 8 counters on site.
- Self contained samples connected directly to the recirculating loop.
 Other samples placed in polypropolyne cylinders with N₂ or Ar gas recirculated through chamber.
- Turnaround time 1 month (3 months notice recommended)
 - 2 weeks/sample + 2 weeks for background.

Radionuclide	Sensitivity
²²² Rn (U)	20 atoms/day
²²⁰ Rn (Th)	10 atoms/day
²¹⁹ Rn (Ac)	50 atoms/day

SNOLAB Workshop 22-23 August 2007

Material Screening

Radon Emanation Chambers

- Used extensively for counting materials used in the SNO experiment.
- sensitivity ~50 decays per day.

• ICP-MS

- Association with facility at NRC (National Research Council) ICP-MS facility in Ottawa.
- Tuned to maximize sensitivity to U and Th at sub ppt levels. K limits to > 100 ppb.

SNOLAB 2008 - ...

Scientific Program

Low Energy Neutrinos SNO+ (SNO filled with liquid scintillator) Search for Cold Dark Matter

- > Picasso
- > DEAP

Investigation of Double-Beta Decay

- > Enriched Xenon Observatory (EXO)
- > SNO+ (upgrade Nd loaded)

SNO++: Survival Probability

pep flux:

Uncertainty ±1.5%

Allows precision test of the Solar Standard Model & the LMA matter enhanced oscillation scenario

Real-time low energy v's experiments are the ultimate probe of the Sun

SNO+ liquid scintillator

B

The Cosmic Connections

Energy budget of Universe

A.Bellerive: Villa como, Oct. 2007

Neutralino Interaction with Matter

Spin dependent interaction – axial coupling

Small freon droplets in polymerized gel at room T° droplets overheat

≻A particle hit vaporizes the droplet:

- phase transition event
- an acoustic shock wave detected with piezoelectric transducers

Isotope	Spin	Unpaired	λ^2
⁷ Li	3/2	р	0.11
¹⁹ F	1/2	ρ	0.863
²³ Na	3/2	р р	0.011
²⁹ Si	1/2	n	0.084
⁷³ Ge	9/2	n	0.0026
127	5/2	р	0.0026
¹³¹ Xe	3/2	n	0.0147

Decarso at SNOLAB

Remotely controled from U de Montréal

A.Bellerive: Villa como, Oct. 2007
Neutralino Interaction with Matter Spin independent interaction – scalar coupling

 \Rightarrow heavy nuclei

wimp M_{WIMP} ~ 100 GeV

Require Low-E Threshold
Require Large Target Mass
Ultra-Low Background

DEAP/CLEAN... sensitivity

A.Bellerive: Villa como, Oct. 2007

DEAP_Experimental Hall _-

ββ decay proposals at SNOLAB

Enriched Xenon Observatory EXO

Summed electron energy in units of the kinematic endpoint (Q)

from S.R. Elliott and P. Vogel, Ann.Rev.Nucl.Part.Sci. 52 (2002) 115.

The only effective tool here is energy resolution

Conclusion

What we have:

Great Physics out of SNO

What is next:

Exciting future for SNOLAB

Thanks

A.Bellerive: Villa como, Oct. 2007